能够4G5G信号转有线无线发射的基站

  • 进货单中暂未添加任何货品

阿里巴巴中国站和淘宝网会员帐号体系、《阿里巴巴服务条款》升级,完成登录后两边同时登录成功。

摘要:5G网络部署和垂直行业应用对于时间同步提出了新的需求。为了更满足高精度的同步需求,需要采用高精度同步源技术、高精度同步传送技术、同步监测技术、智能时钟部署及运维技术。针对OTN系统和SPN系统同步网部署分别提出了典型的方案,可为5G同步网的规划建设提供参考。

5G网络建设已经全面开展,同步网作为基础支撑网络,对于网络质量的保障、业务的发展起到十分重要的作用。相对于4G系统,5G对于同步的精度需求更高,可靠性要求更为严格,应用场景也更复杂,除了TDD系统基本的同步需求之外,5G的站间协同需求、CA/CoMP/MIMO等技术对时间同步提出100 ns级精度要求,高精度定位、车联网、智能制造等行业应用,对于时间同步的精度更是达到10ns以内。现有的同步网络无法完全满足5G时代的同步需求,本文通过分析5G时间同步的需求和5G高精度时间同步的关键技术,提出5G承载高精度时间同步的组网方案。

1.1 5G基本同步需求与4G相同

基本时间同步是TDD制式无线通信系统的共同要求,由于TDD基站上下型号同频,为避免上下行信号互相干扰,要求各基站之间有严格的相位同步关系,确保上下行切换的时间点一致。5G TDD基本业务同步需求与4G TDD基本业务相同,均为±1.5 μs。

1.2 5G协同增强提出更高精度同步要求

站间协同增强可让一个用户的数据通过不同的AAU收发,用户可以在重叠覆盖区域合并多个信号,从而提升带宽体验。不同AAU的信号之间,时差必须满足一定要求,否则无法合并。根据3GPP TS 38.104V15.00(2017-12)技术要求,不同类型的协同增强要求如表1所示。

表1 5G不同类型的协同增强同步要求

为了获得更好的网络质量和服务体验,5G系统中将会更广泛地应用CA/CoMP/MIMO等技术,从而对网络同步提出了100 ns量级甚至更高要求。

1.3 部分新业务需要超高精度时间同步

5G垂直行业的大量新应用目前还在标准完善和产业孵化培育的阶段,不同应用场景对于同步的需求也存在较大偏差,目前仍在探索阶段。从目前阶段的研究中,可以看到高精度定位业务、车联网、智能制造等应用对于时间同步的需求将达到10 ns量级。例如基于到达时间和到达时间差的基站定位技术,同步精度和基站之间的时间相位误差线性相关。1 ns同步误差对应的定位精度约为 0.3~0.4 m,满足3 m的定位精度对应的同步误差约为±10 ns,满足1 m的定位精度对应的同步误差约为±3 ns。

1.4  5G高精度时间同步需要地面同步网支撑

4G时代无线网主要采用基站安装卫星接收机的方式通过GNSS获取同步信号,地面同步网主要用于满足传送网、核心网、数据网等网络的同步需求。相对4G时代5G网络对同步网的需求发生了以下一些新的变化。

a)精度要求更高:部分网络增强协同及行业应用既有μs级同步需求,也有ns级的同步需求,直接通过普通卫星接收机获取单站授时难以完全满足要求。

b)同步场景更为复杂:5G基站密度大,室内基站数量也会增加,会存在大量室内场馆、地铁、隧道等难以获取卫星信号的场景。

c)同步网的安全可靠性要求更为严格:此前卫星接收系统对美国GPS系统高度依赖,存在安全风险,如全面升级为北斗接收系统,会需要巨大的投资。即使采用基于北斗的卫星接收授时,仍然存在卫星信号被干扰的情况,例如某城市为保障重大体育活动,防止私人无人机在活动范围空域飞行,采用技术手段对活动区域内的卫星定位信号进行干扰,结果导致区域内基站的卫星接收也受到干扰,业务受到严重影响。

鉴于上述原因,在5G时期部署地面高精度同步网,对于提升网络稳定性、可靠性,提升业务发展的支撑能力,具有十分重要的意义。

5G高精度时间同步关键技术

从前文中的分析中可以看到,5G对于时间同步的精度和可靠性均提出新的要求,现有的地面高精度时间同步技术主要为基于1588v2的时间同步网络,可以满足5G无线业务基本的±1.5 μs精度要求,但是100 ns甚至10 ns量级的同步需求则需要新的技术和网络支撑。从时间同步网的通用模型(见图1)可以看出,要实现高精度时间同步需要从同步源到末端进行端到端的提升优化,采用多种技术手段共同提升同步精度、同步网快速部署和智能管理能力,其中的主要关键技术有高精度同步源技术、高精度同步传送技术、高精度同步监测技术、智能时钟运维技术等。

图1.时间同步通用网络模型

2.1 高精度同步源技术

高精度同步源头的实现与卫星授时技术密不可分。为提升同步源精度,可采用双频接收技术和卫星共视法。

双频接收技术:卫星接收部分对同步精度的影响最大,相对于单频接收机而言,双频接收机可同时接收单个卫星系统的2个频点载波信号(如GPS的L1、L2或者北斗的B1、B2),通过一定算法可有效消除电离层对电磁波信号延迟的影响,从而提升卫星授时精度。

卫星共视法:此方法是目前远距离时钟比对的主要方法之一,也是国际原子时成员单位合作的主要技术手段之一,其时间比对不确定度可优于10 ns。卫星共视是利用导航卫星距离地球较远、覆盖范围广的特点,将其作为比对中间媒介,在地面需要时间比对的2个地方分别安装接收设备,同时观察同一颗卫星,通过交换数据抵消中间源及其共有误差的影响,实现高精度比对。卫星共视技术比较成熟,性能较好,但无法独立部署应用,需主从站配合使用,并配置数据通道进行数据交互。

综合考虑上述2种技术的实现难易程度、成本和产业成熟程度,在当前阶段建议采用卫星双频技术满足高精度同步源头设备要求,卫星共视技术可以先用于现网时间同步源的性能集中监控,待共视网络建设成熟后再考虑应用于高精度同步源头设备。

2.2 高精度同步传送技术

根据IMT-2020(5G)推进组发布的《5G承载网络架构和技术方案白皮书》中建议,对于±1.5μs同步需求的5G基本业务和部分协同业务,指标分配方法参见国家通信行业标准YD/T “高精度时间同步技术要求”,源头部分±150 ns,承载部分±1 000 ns(30跳),接入部分±250 ns。对于±300ns量级的业务,暂定的建议分配方案为源头部分±30ns,承载部分±200

目前1588v2已经在国内的4G承载网络中进行了规模应用部署,目前支持1588v2的传输设备的单跳时间同步精度为±30ns,对比以上要求,在远距离多跳节点传输时,精度显然无法满足5G的需求。为提升单节点精度,需从以下几方面对1588v2进行优化。

a)打戳位置尽量靠近物理接口,减少光模块内部的半静态延时误差和动态延时误差。

b)提升打戳精度,提升打戳时钟的频率,或者采用其他方法提升打戳分辨率。

c)提升系统实时时钟(RTC——Real Time Clock)同步精度、提升系统内部RTC之间的同步对齐精度。

d)选取优质晶振,提升本地时钟的稳定度。

考虑现有1588v2已经规模部署,在现有配置基础上通过优化实现精度的提升,有利于5G高精度时间同步网络的快速部署。1588v2的技术原理决定了其在部署中易受光纤不对称性影响,建议5G时间同步网部署时尽量采用单纤双向方式进行。

对于100ns量级及更高的精度需求,提升单节点精度也已经无法满足,可考虑采用同步源下沉的方案,通过减少跳数来提高同步精度。

2.3 高精度同步监测技术

同步监测方法总体可分为绝对监测和相对监测两大类,从具体实现方式上可分为外置方式和内置方式。

外置方式可实现同步性能绝对监测,包括外置探针和卫星共视2种方式。外置探针方式在5G同步网中按需部署外置探针,探针通过全球导航卫星系统(GNSS)获得绝对时间基准,对网络末端设备同步输出信号进行监测,再将监测结果发送至中心网管以实现对整个网络同步性能的实时监测。卫星共视方式在网络适当位置部署共视主站和共视从站,以共视接收作为媒介,通过交换数据,得到共视从站(即被监测点)与共视主站(即远端参考基准,如溯源至UTC的绝对基准)之间的比对结果,实现对被监测点性能的绝对监测。

内置方式通过内置功能进行同步性能监测,即利用网络设备自身具备的同步性能监测能力实现同步性能相对监测,主要包括主从监测和环上被动节点监测。主从监测是指Slave设备在同步于主时钟(Master)设备的同时,进行自身同步性能监测。通过对Slave端口时间戳(T1、T2、T3、T4)和计算的时间偏差值(Offset)进行不同方式的统计和分析,可以实现对同步性能的相对监测。环上被动(Passive)节点监测是利用Passive节点对其同步侧与非同步侧同步数据进行比对,从而实现监测。

2.4 智能时钟部署及运维技术

目前同步网的设备在网络中相对于其他专业设备较少,扩容规模和投资有限,各厂家对于同步网功能的提升和研发投入不够,造成目前同步网的OMC对于业务部署和运维支撑能力较差。各厂家OMC系统目前北向接口能力不足,无法实现集中监控;同步网网管目前只能管理到同步网服务器自身,无法完成对业务网元同步信号的告警、性能、资源等管理;同步网端口与授时业务之间的对应关系不明确,缺乏统一网管管理。面向5G的同步网,需要提升管控运维能力。

位于控制层面的智能时钟技术,能够为超高精度同步网的运行维护提供支撑,智能时钟管控系统架构及主要功能如图2所示,其核心功能有:

a)同步网自动规划功能:计算和规划所有或指定区域网元的同步主备路径,减少人工配置工作量,并避免配置错误。

b)图形化动态同步状态查询功能:能够实时展现同步网从源到宿端到端链路及节点状态,拉通各专业,呈现整体同步网状态视图。

c)同步配置和运行状态检测和分析功能:实现业务智能下发,减少人工配置。对同步配置进行分析,发现定时环、跳数越限等配置风险,生成检测报告。具备同步告警抑制和根源分析能力,根据跟踪状况等信息完成告警根因分析定位。

d)智能故障恢复功能:在同步网中多点故障、主备时钟失效时,进行路径分析和自动恢复,解决成片网络的时钟失步问题。

e)同步性能实时监控分析:实时监控同步网络的性能,利用每个环上设备的Passive 端口进行时间性能比对监控和不对称性分析。

图2.智能时钟管控系统示意图

3.1高精度时间同步组网模型

5G高精度时间同步组网和目前4G采用的1588v2同步网架构一致,城域网配置一主一备2套时频同步设备(ePRTC),一般在城域网的核心机房异局址设置,同步信号从核心层传输设备注入,同步传递技术采用SyncE(O)+PTP,承载网元设置为BC模型,承载网时间传递链路BC网元数不超过20个,通用部署构架如图3所示。

图3.5G同步网同步通用部署构架

对于100ns甚至更高超高精度的同步需求,需采用同步源下沉方案,减少同步链路节点数量的方式,以满足同步精度需求。同步源下沉模式部署构架如图4所示。城域网根据业务需要,配置多台时频同步设备(PRTC+),从汇聚/接入设备注入,满足区域同步需要。同步传递技术采用SyncE(O)+PTP,承载网元设置为BC模型。下沉的同步源设备(PRTC+)可以与城域网核心机房内部署的ePRTC设备配合,提供性能监测和同步辅助功能,增强同步网的稳定性和可靠性。此方案会大规模增加同步设备数量,建议针对有特定需要的区域进行小范围部署,不宜全网大规模应用。

图4.5G同步网同步源下沉模式部署构架

5G传送网中,对于传输距离较长的中继段,常有SPN/IPRAN over OTN的场景,OTN时间传送分为带外OSC模式和带内ESC模式。OSC模式是使用OSC通道传送时间/时钟信息(见图5),只要有OSC管理的地方就能获取全网同步的时间/时钟信息。此时所使用线卡是否支持1588,不影响OSC传送。ESC模式是使用线路单板OTN开销传送时间/时钟信息(见图6),无需额外硬件配置,无距离限制,只要有业务上下的站点就能获取到全网同步的时间/时钟信息。OSC模式的精度相对ESC模式更高,建议在OTN系统中采用OSC模式部署,同时采用单纤双向光模块,避免收发光纤不对称造成的误差。

图5.带外OSC时钟/时间传送方式

图6.带内ESC时钟/时间传送方式

中国移动采用SPN技术建设5G传送网,根据《中国移动切片分组网(SPN)设备技术规范》要求,SPN设备应支持以太频率同步、CES/CEP业务时钟恢复和时间同步功能。SPN设备应支持通过PTP实现超高精度时间同步,SPN每跳设备的最大时间偏差max|TE|小于5 ns。SPN设备具备DWDM能力时,PTP应支持通过单纤双向OSC通道进行传递,SPN设备不配置DWDM时,PTP通过FlexE接口或者以太网接口进行传递。SPN设备应支持通过FE、GE、10GE、25GE、40GE、50GE、100GE、200GE、400GE等以太网端口以及50GE、100GE、200GE、400GE等FlexE接口对PTP报文发送接收和处理,PTP报文协议的格式和处理应满足《中国移动超高精度时间同步接口规范》的要求。

SPN系统同步部署方案与现有PTN系统模式一致,有单纤双向和单纤单向2种方案,其中单纤双向模式可以解决收发光纤不对称的问题。考虑汇聚层以上的SPN系统主要为100GE以上端口互联,目前没有100GE以上的单纤双向光模块,为了节省设备业务槽位及端口资源,中国移动在SPN设备技术规范中要求SPN核心汇聚层设备应支持2路同步专用的GE光接口,可用于组建同步环。但当前应用的SPN设备暂未具备该专用同步接口,仍然需要额外配置10GE或GE的业务端口,并使用单纤双向光模块,组建同步环。SPN部署方案如图7所示。

图7.SPN系统同步网部署方案示意图

同步网作为通信网中重要的基础支撑网络,对于各业务网络的稳定可靠起着至关重要的作用,目前5G网络的规模部署已经开展,在关注无线网、核心网、传送网等网络规划建设的同时,同步网的部署也应该引起足够的重视。本文通过分析5G时间同步的需求、高精度时间同步实现的关键技术,对5G同步组网部署方案进行了初步研究,希望能为5G网络规划建设提供一些有价值的参考思路。随着5G垂直行业应用的不断拓展,未来业界对于高精度同步的研究还将继续深入。

[3]中国移动TD 无线系统高精度时间同步总体技术要求 [S] 北京中国移动通信集团公司 2011

[4]中国移动切片分组网(SPN)设备技术规范 [S] 北京中国移动通信集团公司 2019

[5] 王悦, 林泳泽. 面向5G的高精度时间同步网演进策略[J]. 电信技术, -57.

[8]唐庆涛,袁野,应赟.1588V2技术在城域网中的应用与实现[J].邮电设计技术,-47.

[9]李寿喜. IP环境下时钟同步网模型和指标的探讨[J].邮电设计技术,-50.

[12]孟凡, 王超, 李云静, et al. 面向5G大容量业务的超高速传输标准及技术探讨 [J]. 电信工程技术与标准化, ):30-34.

陶源,工程师,毕业于西安电子科技大学,主要从事有线传输专业相关咨询设计工作;

吴婷,高级工程师,毕业于西安理工大学,主要从事传送网技术研究、网络规划,工程项目管理工作;

  是5G网络的核心设备,提供无线覆盖,实现有线网络与无线终端之间的无线信号传输。基站的架构、形态直接影响5G网络如何部署。在技术标准中,5G的频段远高于2G、3G和4G网络,5G网络现阶段主要工作在MHz频段。由于频率越高,信号传播过程中的衰减也越大,所以5G网络的基站密度将更高。

  **年**月**日工信部正式向三大运营商以及中国广电发放5G商用牌照。商用牌照落地标志着网络运营单位可以正式推进5G网络组网和建设,5G商用建设将进入实质落地阶段。从基站建设来看,三大运营商**年建设数量有望达到13-***万座,**年预期***万站以上。华为和中兴通讯在**年各自基站出货量预期分别达到***万站和***万站的体量。基站建设产业链企业业绩将在**年实现高增长。

  中国5G基站市场深度调研与发展趋势分析报告(年)对我国5G基站、发展变化、竞争格局等情况进行调研分析,并对未来5G基站市场发展趋势作了阐述,还根据5G基站行业的发展轨迹对5G基站行业未来发展前景作了审慎的判断,为5G基站产业投资者寻找新的投资亮点。

  中国5G基站市场深度调研与发展趋势分析报告(年)最后阐明5G基站行业的投资空间,指明投资方向,提出研究者的战略建议,以供投资决策者参考。

  产业调研网发布的《》是相关5G基站企业、研究单位、政府等准确、全面、迅速了解5G基站行业发展动向、制定发展战略不可或缺的专业性报告。

第一章 5G基站的基本概述

  1.1 5G基站的内涵及分类

    1.1.1 5G基站基本内涵

    1.1.2 5G基站建设地位

    1.1.3 5G基站基本分类

    1.1.4 5G基站形态变化

  1.2 5G基站覆盖类别分析

    1.2.1 室外覆盖

    1.2.2 室内覆盖

  1.3 5G基站产业链分析

    1.3.1 产业链结构分析

    1.3.2 产业链主体分析

第二章 5G基站建设环境分析

    2.1.1 宏观经济概况

    2.1.2 工业运行状况分析

    2.1.3 转型升级态势

    2.1.4 疫后经济展望

    2.2.1 工信部将加快信息产业发展

    2.2.2 “新基建”列入中央政府报告

    2.2.3 电信基础设施共建共享政策

    2.2.4 地区发布5G基站建设政策

    2.3.1 金融市场运行

    2.3.2 社会融资规模

    2.3.3 固定资产投资

    2.4.1 研发经费投入增长

    2.4.2 技术研发创新情况分析

    2.4.3 我国数字化水平

    2.4.4 企业信息化水平

    2.5.1 网民数模分析

    2.5.2 城乡网民结构分析

    2.5.3 网民上网时间增加

    2.5.4 网络社会正在成型

第三章 5G基站建设产业环境——5G产业发展分析

  3.1 5G产业链相关介绍

    3.1.1 5G产业链结构

    3.1.2 5G产业架构体系

    3.1.3 5G产业链规划期

    3.1.4 5G产业链建设期

    3.1.5 5G产业链应用期

  3.2 5G产业运行状况分析

    3.2.3 5G运营商竞争

  3.3 中国5G首批试点城市发展综合分析

    3.3.1 5G试点城市概况

    3.3.2 5G产业区域占比

    3.3.3 5G发展区域特点

    3.3.4 5G产业建设评估

    3.3.5 5G产业规划解读

  3.4 年5G商业化应用进程

    3.4.1 5G商用影响分析

    3.4.2 5G商用进程加快

    3.4.3 5G频谱分配现状调研

    3.4.4 5G商用牌照发放

    3.4.5 5G商用企业布局

    3.4.6 5G商用发展前景

  3.5 5G融合应用的问题及对策分析

    3.5.1 5G融合应用的问题

    3.5.2 5G融合应用的对策

第四章 年国内外5G基站建设综况

  4.1 国际典型国家5G基站建设布局

    4.1.4 马来西亚

  4.2 国内5G基站建设状况分析

    4.2.1 基站投资建设地位

    4.2.2 基站投资建设历程

    4.2.3 全国基站建设规模

    4.2.4 基站建设特点分析

    4.2.5 地区建设规划分析

      随着5G商用牌照的发放,各大运营商已经开始加紧部署5G基站。目前国内三大运营商已经明确19年5G投资预算,共计达到410亿元,中国移动、中国联通和中国电信的预算分别为240/80/90亿元。中国移动计划今年新建5G基站5万个,在全国超过50个城市实现5G商用,并在2020年将5G网络覆盖范围进一步扩大;中国联通和中国电信可能会在部分地区采取共建5G网络的方式,以降低单个运营商的投资成本。5G建设有望在明年进入规模化建设周期,根据三大运营商的规划,5G基站部署将在东部沿海地区和华中地区首先展开,并向西扩展,逐渐实现全国覆盖。

      三大运营商5G建设规划

    4.2.6 基站建设动态分析

    4.2.7 细分领域建设需求

  4.3 区域5G基站建设布局分析

    4.3.1 甘肃省5G基站建设布局

    4.3.2 湖北省5G基站建设动态

    4.3.3 云南省5G基站建设动态

    4.3.4 广东省5G基站建设动态

    4.3.5 天津市5G基站建设布局

    4.3.6 山西省5G基站建设布局

  4.4 国内5G小基站建设状况分析

    4.4.1 建设地位转变

    4.4.2 发展现状分析

    4.4.3 建设规划原则

    4.4.4 建设特点分析

    4.4.5 建设覆盖定位

    4.4.6 未来发展方向

  4.5 5G基础建设面临的困难

    4.5.1 技术挑战分析

    4.5.2 产品挑战分析

    4.5.3 运维挑战分析

    4.5.4 市场挑战分析

    4.5.5 安全挑战分析

  4.6 5G基础建设发展的对策

    4.6.1 5G基础设施共建共享

    4.6.2 加大5G基建政策支持

    4.6.3 积极探索新型运营模式

第五章 5G基站建设成本及建设模式分析

  5.1 5G基站建设成本分析

    5.1.1 主要成本构成

    5.1.2 成本规模测算

  5.2 5G基站能耗成本分析

    5.2.1 通讯基站功耗对比

    5.2.2 基站基本供电模式

    5.2.3 电费成本整体偏高

    5.2.4 电费成本降低对策

  5.3 5G基站新型建设模式

    5.3.3 智慧路灯+5G微基站

  5.4 5G基站独立组网建设模式

    5.4.1 地区布局案例

    5.4.2 发展重点内容

    5.4.3 发展要求分析

第六章 年5G基站建设相关利好

  6.1 射频前端行业

    6.1.1 行业发展历程

    6.1.2 产业商业模式

    6.1.3 市场发展规模

    6.1.4 市场竞争情况分析

    6.1.5 应用需求分析

  6.2 滤波器行业

    6.2.1 行业基本概述

    6.2.2 市场规模情况分析

    6.2.3 行业竞争格局

    6.2.4 产品需求情况分析

    6.2.5 行业发展前景

  6.3 光器件市场

    6.3.1 光器件的分类

    6.3.2 市场规模情况分析

    6.3.3 市场竞争格局

    6.3.4 需求空间分析

    6.4.1 行业运行情况分析

    6.4.2 行业主体分析

    6.4.3 产品需求情况分析

    6.4.4 市场需求空间

    6.5.1 通信天线设计

    6.5.2 基站天线分类

    6.5.3 行业主体分析

    6.5.4 产品需求情况分析

    6.5.5 需求空间预测分析

  6.6 低压电器行业

    6.6.1 低压电器介绍

    6.6.2 产品应用范围

    6.6.3 市场格局分析

    6.6.4 应用需求分析

  6.7 锂电池行业

    6.7.1 行业规模情况分析

    6.7.2 行业竞争格局

    6.7.3 产品采购加快

    6.7.4 电量需求情况分析

    6.7.5 需求增量预测分析

第七章 年中国三大运营商5G基站建设情况分析

  7.1 三大运营商5G建设布局综况

    7.1.1 三大运营商建设计划

    7.1.2 5G基站建网策略特点

    7.1.3 5G基站集采结果公布

    7.1.4 5G基站项目招标特点

    7.2.1 企业基本概况

    7.2.2 企业财务情况分析

    7.2.3 5G基站建设布局

    7.2.4 5G基站建设规划

    7.3.1 企业发展概况

    7.3.2 企业财务情况分析

    7.3.3 5G基站建设布局

    7.3.4 5G基站建设规划

    7.4.1 企业发展概况

    7.4.2 企业财务情况分析

    7.4.3 5G基站建设布局

    7.4.4 5G基站建设规划

中國5G基站市場深度調研與發展趨勢分析報告(年)

    7.4.5 核心竞争力分析

    7.4.6 公司发展战略

    7.4.7 未来前景展望

第八章 5G基站投资建设的其他主体

    8.1.1 企业发展概况

    8.1.4 企业经营状况分析

    8.2.1 企业发展概况

    8.2.2 企业经营情况分析

    8.2.3 主营业务分析

    8.2.6 公司发展战略

    8.3.1 企业发展概况

    8.3.2 经营效益分析

    8.3.3 业务经营分析

    8.3.4 财务状况分析

    8.3.5 核心竞争力分析

    8.4.1 企业基本概况

    8.4.3 经营效益分析

    8.4.4 业务经营分析

    8.4.5 财务状况分析

    8.4.6 核心竞争力分析

    8.5.1 企业基本概况

    8.5.3 经营效益分析

    8.5.4 业务经营分析

    8.5.5 财务状况分析

    8.5.6 核心竞争力分析

    8.6.1 企业基本概况

    8.6.3 经营效益分析

    8.6.4 业务经营分析

    8.6.5 财务状况分析

    8.6.6 核心竞争力分析

第九章 5G基站相关技术发展部署分析

  9.1 5G基站多样化覆盖技术部署

    9.1.1 整体建设思路

    9.1.2 宏站塔桅建设

    9.1.3 微站建设部署

    9.1.4 室分建设部署

    9.1.5 电源建设部署

    9.1.6 传输光缆建设

  9.2 5G基站防雷接地技术分析

    9.2.1 5G基站雷击危害分析

    9.2.2 5G基站防雷技术特点

    9.2.3 5G基站防雷技术要求

    9.2.4 5G基站防雷技术措施

  9.3 5G基站综合节能技术分析

    9.3.1 5G基站组网特点

    9.3.2 5G基站能耗分析

    9.3.3 5G基站管理节电

    9.3.4 5G基站技术节电

  9.4 5G基站电源系统改造方案

    9.4.1 基站电源系统分析

    9.4.2 基站电源系统改造建议

    9.4.3 5G基站电源典型改造方案

    9.4.4 5G基站电源改进方案探讨

  9.5 5G基站建设部署的技术问题及对策

    9.5.1 物理空间问题

    9.5.2 能耗与环境问题

    9.5.3 解决策略分析

第十章 5G基站设备参数及规划分析

  10.1 5G基站设备参数分析

    10.1.1 宏站设备

    10.1.2 微站设备

    10.1.3 室分设备

  10.2 专用硬件平台设备

  10.3 通用硬件平台设备

    10.3.1 通用硬件5G基带设备

    10.3.2 通用硬件5G白盒基站

  10.4 5G设备路标建设规划

    10.4.1 5G网络长期演进目标

    10.4.2 5G宏基站设备路标

    10.4.3 5G微基站设备路标

第十一章 5G基站建设投资壁垒及典型项目案例分析

  11.1 5G基站行业投资壁垒分析

    11.1.1 资质壁垒

    11.1.2 经验壁垒

    11.1.3 技术壁垒

    11.1.4 人才壁垒

    11.1.5 资金壁垒

  11.2 5G小基站研发及产业化建设项目

    11.2.1 项目基本状况分析

    11.2.2 项目实施必要性

    11.2.3 项目实施可行性

    11.2.4 项目投资概算

    11.2.5 项目实施计划

    11.2.6 项目经济效益

    11.2.7 项目批准状况分析

  11.3 5G通信基站研发及产业化项目

    11.3.1 项目基本状况分析

    11.3.2 项目建设必要性

    11.3.3 项目建设可行性

    11.3.4 项目投资计划

    11.3.5 项目实施主体

  11.4 九江明阳高频高速板投资项目

    11.4.1 项目基本状况分析

    11.4.2 项目建设背景

    11.4.3 项目建设必要性

    11.4.4 项目建设可行性

    11.4.5 项目投资概算

    11.4.6 项目经济效益

    11.4.7 项目用地评估

第十二章 (中′智林)5G基站建设前景及趋势展望

  12.1 5G产业投资前景展望

    12.1.1 整体投资前景

    12.1.2 产业投资热点

    12.1.3 产业投资空间

    12.1.4 产业投资风险

  12.2 5G基站建设投资前景

    12.2.1 5G基站建设加快

    12.2.2 5G基站投资机会

    12.2.3 5G基站应用机遇

    12.2.4 5G基站建设规划

  12.3 年中国5G基站建设预测分析

    12.3.1 中国5G基站建设的影响因素分析

    12.3.2 年5G基站建设规模预测分析

  图表 5G基站示意图

  图表 5G基站是5G产业链中游的核心设备

  图表 5G基站分类

  图表 5G基站相比4G基站的形态发化

  图表 5G基站相比4G基站的重量、功耗和带宽发化

  图表 13.5GHz的穿透损耗

  图表 5G基站产业链结构分析

  图表 5G基站产业链企业

  图表 中国网民城乡结构

  图表 年网民人均每周上网时长

  图表 各类应用使用时长占比

  图表 六类应用使用时段分布

  图表 网民在一分钟内通过网络完成的活动

  图表 5G产业链结构

  图表 5G架构体系

中国の5G基地局市場の詳細な研究開発動向分析レポート()

  图表 5G发展相关政策(国家)

  图表 5G发展规划(地方)

  图表 中国5G市场规模

  图表 中国三大运营商首批5G应用试点城市概况

  图表 2021年全国重点发展5G产业区域占比

  图表 5G首批试点城市分布

  图表 中国5G首批试点城市通信产业发展潜力排行榜

  图表 中国部分省市5G通信产业规划

  图表 全球5G整体商用进度排名

  图表 全球5G总体发展排名

  图表 主要国家5G商用进度(一)

  图表 主要国家5G商用进度(二)

  图表 中国三大电信运营商5G系统实验频段许可状况分析

  图表 三大运营商及中国广电5G频谱分配情况分析

  图表 2021年全国各省市5G基站建设规模

  图表 5G宏基站+微基站超密集组网技术

  图表 爱立信室分系列产品

  图表 武汉虹信5G室内扩展型皮基站

  图表 5G基站和4G基站功耗对比

  图表 5G基站基本供电模式

  图表 射频前端向模块发展

  图表 射频前端行业商业模式

  图表 Fabless模式下产业链分工

  图表 国内射频前端产业链厂商分布

  图表 SAW滤波器竞争格局

  图表 BAW滤波器竞争格局

  图表 国内滤波器公司详情

  图表 5G基站滤波器用量

  图表 单部手机所含滤波器的价值量

  图表 年中国光模块/器件行业市场规模统计情况及预测分析

  图表 2021年光器件制造商全球市场份额

  图表 全球光模块市场规模及预测分析

  图表 全球/国内排名前20的PCB厂商

  图表 我国5G宏基站PCB市场空间

  图表 不同通信技术所需天线长度

  图表 基站天线分类

  图表 国内手机天线厂商分析

  图表 5G基站天线附加值发化

我要回帖

更多关于 便携式4G基站 的文章

 

随机推荐