求这道题正整数的解

  1. 定理:非空有上界数集必有上确界;

  2. 定理:单调有界数列必收敛;

  3. 柯西列:数列{an}为柯西列,即对任意小数ε>0,存在正整数N,对任意m,n>N,|am-an|<ε;

  4. 柯西准则:数列{an}收敛的充要条件是数列{an}是柯西列;

  5. 定理:数列{an}收敛的充要条件是:{an}的任何子列都收敛。

  6. 双重向量积:给定空间三向量,先作其中两个向量的向量积,再作所得向量与第三个向量的向量积,那么最后的结果仍然是一向量,叫做所给三向量的双重向量积。例如(axb)xc就是三向量abc的一个双重向量积;

  7. 性质:(axb)xc是和ab共面且垂直于c的向量;

  8. 右手系/左手系:设有不共面的三个向量abc,将它们移到同一始点,则ab决定一个平面,而c指向平面的一旁,将右手四指并拢与拇指分开,使四指向掌心弯曲的方向,表示从a的方向经过小于平角的转动达到b的方向,此时若拇指方向与c方向指向平面的同一旁,则称向量组{abc}构成右手系,否则称为左手系;

  9. 直角标架/直角坐标系:设ijk是空间中以O为起点的三个向量,它们两两垂直并且都是单位向量,则O;ijk称为空间的一个以O为原点的直角标架或直角坐标系,记为{O;ijk};

    右手直角标架/右手直角坐标系:如果向量ijk成右手系,那么{O;ijk}称为一个右手架标或右手直角坐标系;否则称为左手直角架标或左手直角坐标系;

    直角坐标系的基向量:我们把ijk称为该直角坐标系的基向量;

  10. 仿射架标/仿射坐标系:如果我们不要求ijk单位长度且两两正交,只要求它们不共面,那么{O;ijk}称为空间一个以O为原点的仿射架标或仿射坐标系;

    右手仿射架标/右手仿射坐标系:如果向量ijk成右手系,那么{O;ijk}称为一个右手仿射架标或右手仿射坐标系;否则称为左手仿射架标或左手直仿射坐标系;

    仿射坐标系的基向量:我们把ijk称为该仿射坐标系的基向量;

  11. 坐标:O;ijk是空间的一个仿射坐标系(直角坐标系),则任意一个向量v可以唯一表示成v=xi+yj+zk,称(x,y,z)为向量v在该坐标系{O;ijk}下的坐标,记为v=(x,y,z);

    点的坐标:设{O;ijk}是空间的一个以O为原点的仿射坐标系(直角坐标系),规定P点的坐标为向量OP的坐标,向量OP成为P点的定位向量或矢径,若P点的坐标为{x,y,z},记为P(x,y,z);

  12. 坐标轴/坐标平面/卦限:ijk所在的直线通常成为坐标轴或分别成为x,y,z轴,每两根坐标轴所决定的平面称为坐标平面或xOy,yOz,zOx坐标平面,3个坐标平面把空间分割成8个部分,称为该坐标系的8个卦限;

  13. 方向角、方向余弦:我们把向量a与x轴的夹角α,与y轴的夹角β,与z轴的夹角γ,叫做向量a的方向角;a的方向角的余弦叫做a的方向余弦——

  14. d.若A是n级矩阵,单位矩阵为E,则有:AE=EA=A

    e.矩阵乘法与数量乘法满足:k(AB)=(kA)B=A(kB)

    f.可逆方阵:设A为n阶方阵,若存在n阶方阵B,使AB=BA=E,则称B为A的逆方阵,而称A为可逆方阵。

  15. 矩阵A可逆的充要条件:|A|不为0——|A|为矩阵A对应的行列式。

  16. 设A与B都是数域K上的n级矩阵,如果AB=E,那么A与B都是可逆矩阵,并且A^(-1)=B,B^(-1)=A。

  17. 定义:n阶行列式|A|中,划去第i行和第j列,剩下的元素按原来次序组成的n-1阶行列式称为矩阵A的(i,j)元的余子式,记作Mij

  18. 定义:令Aij=(-1)^(i+j)Mij,称Aij是A的(i,j)元的代数余子式。

  19. 矩阵的秩:设非零矩阵A=(aijmxn,A中若存在一个s阶子式不等于零,一切s+1阶子式都等于零,则称A的秩为s,记为秩A=s或r(A)=s或rank(A)=s,若A=0mxn,则秩A=0,则A=0;

  20. E(i,j)为单位矩阵i,j行对调——

    方阵A可逆,A对调i,j行成B矩阵:B=E(i,j)A

    方阵A可逆,A对调i,j列成B矩阵:B=AE(i,j)

  21. 矩阵的转置:把n级矩阵A的行与列互换得到的矩阵称为A的转置,记作A',|A'|=|A|。

  22. 定义:设A为方阵,若A'=A,则称A为对称矩阵,若A'=-A,则称A为反/斜对称矩阵。

  23. 定义:如果AB=BA,则称A与B可交换。

  24. 定理:如果A可逆,那么A'也可逆,并且(A')^(-1)=(A^(-1))';

  25. 克莱姆法则:设A是n*n矩阵,线性方程组Ax=B——

    若|A|≠0,则方程组有唯一解:xii/Δ,其中Δ=|A|,Δi为|A|中第i列换为B,其它各列与|A|相同的n阶行列式(i=1,2,……,n);

  26. 对n维方阵A,若其行(列)向量线性相关,则|A|=0,若其行向量线性无关,则|A|不为0.

  1. 《数学分析》(华东师范大学数学系 编)

  2. 《空间解析几何》(高红铸 王敬蹇 傅若男 编著)

  3. 《高等代数题解精粹》(钱吉林 编著)

例题(来自《数学分析(华东师范大学数学系 编)》)——

例题(来自《空间解析几何(高红铸 王敬蹇 傅若男 编著)》)——

例题(来自《高等代数题解精粹(钱吉林 编著)》)——

设A为n阶方阵(n>=2),E为n阶单位矩阵,A*为A的伴随矩阵,|A|为A的行列式.

如A为非奇异,试证:(A*)*=A^(n-2)A.

证:当A为非奇异,即|A|≠0——

我要回帖

更多关于 求方程组的正整数解 的文章