洛必达法则可以用几次完之后如何得出的1?

L'Hospital
何时失效并不是个有意义的问题...废话,一个定理怎么可能会有错的时候,除非适用条件不满足乱套定理...初中生高中生不懂乱用还可以原谅...都大学生了别和中学生一般见识...=============================================原理上洛必达法则适用的情况必定能用泰勒秒杀,用几次洛必达就用几阶泰勒灭之...放心好了,运算量不会上天的,对一个复杂的复合函数求导绝对比连续展开两次泰勒运算量大...泰勒法不像洛必达用前还要判定,烦得要死...跳过思考就是暴力干,适合我这种肝大无脑的玩家...1.压根不是未定型...洛必达法:你若作死,便是晴天...这死法,我无话可说,不对,无可奉告...----------------------------------------------------------2.求导后的极限不存在分子分母同时求导以后应该是双份的快乐啊,为什么会这样呢.....\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to \infty } \frac{{x + \cos x}}{x}\\ &= \mathop {\lim }\limits_{x \to \infty } 1 + \frac{{\cos x}}{x}{\text{(cos有界)}}\\ &= 1\\ \end{aligned}\]人被杀...就会死...式子求导就狗带...秀了恩爱分得快...----------------------------------------------------------3.诈尸型所谓的陷阱题,其实错误和上面一样的,不过比较隐蔽,因为刚开始明明是未定型,但是求导一次后就不是了,大多数碰得到的都是这种.泰勒展法:\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \cos x}}{{{x^2}}}\\ T_3 &= \mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 + x + \frac{{{x^2}}}{2} + O\left( {{x^3}} \right)} \right) - \left( {1 - \frac{{{x^2}}}{2} + O\left( {{x^3}} \right)} \right)}}{{{x^2}}}\\ &= \mathop {\lim }\limits_{x \to 0} \frac{{x + {x^2} + O\left( {{x^3}} \right)}}{{{x^2}}}\\ &= \mathop {\lim }\limits_{x \to 0} \frac{1}{x} + 1 + O\left( {{x^1}} \right)\\ &= \infty\\ \end{aligned}\]无脑过...诈尸?尸体烧了怎么输...----------------------------------------------------------4.循环型\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to \infty } \frac{x}{{\sqrt {{x^2} + 1} }}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{x^\prime }}{{(\sqrt {{x^2} + 1} )^\prime }}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{(\sqrt {{x^2} + 1} )^\prime }}{{x^\prime }}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{x}{{\sqrt {{x^2} + 1} }}\\ &= {\text{毅种循环...}}\\ \end{aligned}\]泰勒法\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to \infty } \frac{x}{{\sqrt {{x^2} + 1} }}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{x}{{x + \frac{1}{{2x}} + O\left( {\frac{1}{{{x^3}}}} \right)}}\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{{x^2} + \frac{1}{2} + O\left( {\frac{1}{{{x^2}}}} \right)}}\\ &= 1\\ \end{aligned}\]我是函数式玩家...循环什么的...不存在的......注意\[\sqrt {{x^2} + 1} \sim 1 + \frac{{{x^2}}}{2} + O\left( {{x^3}} \right)\] 的收敛域...无穷远处展开式是 \[\sqrt {{x^2} + 1} \sim x + \frac{1}{{2x}} + O\left( {\frac{1}{{{x^3}}}} \right)\] 才对...呃啊....记忆量好像变成了双倍啊.....----------------------------------------------------------5.吸收型\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to 0} \frac{{\exp ( - 1/{x^2})}}{{{x^2}}}\\ &= 2\mathop {\lim }\limits_{x \to 0} \frac{{\exp ( - 1/{x^2})}}{{{x^5}}}\\ &= 4\mathop {\lim }\limits_{x \to 0} \frac{{\exp ( - 1/{x^2})}}{{{x^8}}}\\ &= \text{狗die}\\ \end{aligned}\]攻击反而给怪加血...我已经没有什么话可说的了...\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to 0} \frac{{\exp ( - 1/{x^2})}}{{{x^2}}}\\ &= \mathop {\lim }\limits_{x \to \infty } {x^2}{e^{ - {x^2}}} = 0\\ T_2 &= \mathop {\lim }\limits_{x \to 0} \frac{{1 - \frac{1}{x} + O\left( {\frac{1}{{{x^2}}}} \right)}}{{{x^2}}} = 0\\ \end{aligned}\]泰勒也不好用,0点处本身无法展开,除非强行在无穷远处展开...搞事情这是,取个倒数多简单的事...----------------------------------------------------------6.极端复杂型\[L = \mathop {\lim }\limits_{x \to 0} \frac{{7{x^3} + 6{e^{ - {x^2}}}\sin x - 6x}}{{3\ln \frac{{1 + x}}{{1 - x}} - 6x - 2{x^3}}}\]傻子都看得出来出题人在凑阶,就是为了坑洛必达...事实上这道题要用6次洛必达...如果你没背等价无穷小的话...泰勒总归背过吧...怎么着也比6次求导运算量小...----------------------------------------------------------7.变限积分楼上又说变限积分不能用泰勒...开玩笑...习题留作证明,不是,证明留作习题所以有种强行的做法:\[\begin{aligned} L &= \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\int_0^x {\left
{\sin t} \right|{\text{d}}t} \\ {T_2} &= \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\left( {2\left[ {\frac{x}{\pi }} \right] - 1 - \cos O\left( {{x^2}} \right)} \right)\\ &= \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\left[ {\frac{{2x}}{\pi }} \right] - O\left( {\frac{1}{{{x^2}}}} \right)\\ &= \frac{2}{\pi }\\ \end{aligned}\]这个比较蛋疼...展开后还有取整函数(来自周期性)...反正不是正常大学生该会的方法了...还是用几何法比较靠谱...----------------------------------------------------------8.抽象函数暂时找不到例子,洛必达无能为力,但是泰勒法还是能过,直接设ax+bx^2+cO(x^3)然后凑个数,相当于高中的特殊值法...===========================================100金币能买到的神技....怎么看都是给五级新手玩家用的...打打村口的史莱姆还可以...到外面面对各种Boss根本打不出伤害...Update1:我只是说可以用泰勒...没说只能用泰勒...毕竟泰勒还是记忆量很大的...关键是我想找到一个万能方法解决所有初等的极限,不过这个想法破产了...我碰到了几个反例...级数型...天生无法多项式展开...这是 Stolz 可以弥补一下...无法展开的,收敛域够不着的...\[L = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\log ({a^x} + {b^x}) = \log \max (a,b)\]
...0点能展开但是0点收敛域不能到达无穷远处,然后无穷远处本身又无法展开...这个用一次洛必达后反而能做....

我要回帖

更多关于 洛必达法则可以用几次 的文章

 

随机推荐