ZLDS114激光检测仪的测量精度传感器如何保证在高温环境下测量的精度?

现在电子工业的芯片级封装(IC封装)和板卡级的组装均大量采用锡基合金填充金属进行焊接,完成器件的封装与卡片的组装。例如,在倒片芯片工艺中,钎料直接把芯片连接到基板上;在电子组装制造中,利用钎料把器件焊接到电路基板上。锡焊工艺包括波峰焊和回流焊等,波峰焊是利用熔融的钎料循环流动的波峰面,与插装有元器件的PCB焊接面相接触完成焊接过程;回流焊则是将钎料膏或焊片事先放置在PCB焊盘之间,加热后通过钎料膏或焊片的熔化将元件与PCB连接起来。激光锡焊指的是以激光作为热源,将含铅或不含铅的锡料熔入焊件的缝隙,使其连接的一种非接触式的焊接技术。激光锡焊技术广泛应用于电子、电气、数码类等行业,该领域所涵盖的产品其所包含的任何元器件都或许会涉及到锡焊工艺,大到PCB板主件,小到晶振元件,绝大多数的焊接需要在300℃以下完成。松盛光电在线式红外测温仪松盛光电在线式红外测温仪系统适用于在线测量激光加工点的温度,温度测量范围从100℃到400℃,最小可测量0.25mm的目标。采用短波段的探测器,相应时间≥20us,抗干扰能力强;无需冷却可耐65℃的环境温度并且通过串口连接其他激光器后可连续输出相应的信号作为其他的系统用,可通过IO信号外部控制此系统执行指令工作,指令执行结束后输出IO信号。激光锡焊技术应用难点传统的锡焊,包括波峰焊、回流焊、手工烙铁锡焊能解决的焊锡工艺问题激光锡焊可以逐渐取代,但像贴片锡焊(主要为回流焊),目前激光焊工艺还不适用,由于激光自身的一些特点,也使得激光锡焊工艺更加复杂,具体归纳为:1)对于精密细微锡焊,工件定位装夹困难,焊样及量产存在难度;2)激光高能量密度易导致工件损伤,尤其对于PCB板锡焊,基板及金属嵌层结构不好极容易烧板,样品不良率高以致成本高昂使客户无法接受;3)激光的能量高度集中易造成锡膏的飞溅,在PCB板锡焊中极易造成短路导致产品报废;4)对于软线材类,装夹定位一致性不好,焊样饱满度及外观差异性大;5)精密锡焊往往有送丝填充锡料的要求,0.4 mm线径以下的锡丝自动送丝困难。激光锡焊市场需求概况激光锡焊在国内国外都有不同程度的发展,尽管经过这些年的发展,始终没有大的跨越和应用拓展,不得不说这是焊接应用的一个软肋。然而市场需求不断变化,不但存在纵向数量的增长,而且横向的应用领域也在不断的扩展,以电子数码类产品相关零部件锡焊工艺需求为主导。涵盖其他各行业零部件锡焊工艺需求,包括汽车电子、光学元器件、声学元器件、半导体制冷器件、安防产品、LED照明、精密接插件、磁盘存储元件等;就客户群来说,其中以苹果客户产品相关零部件衍生出相关锡焊工艺需求为主导,包括其上游产业链也相继寻找激光锡焊工艺解决方案,总体来看,激光锡焊在目前及未来很长的时间将会有惊人的爆发式增长和较为庞大的市场体量。亟待工艺突破性需求包括苹果公司供应商这样的企业,由于生产的产品是最新最高端的设计,在量产过程中会碰到棘手的工艺问题,亟需改进和完善。一个很典型的领域就是存储元器件行业,磁头是一种极其精密和工艺要求非常高的存储零部件,磁头的数据排线一般为柔性PCB,贴敷在钢构体上,其一端阵列排布的微细点需预先上锡,微小上锡量只能显微镜观察下完成,并且对焊接的效果要求极其严格。传统的焊接方式是手工焊,对操作人员的焊接水平要求非常高,劳动力资源的稀缺及流动性给生产造成极大不确定性,况且也无法量化工艺标准(没有工艺参数,完全依靠人为感官判断焊后效果),因此亟需新的焊接工艺来克服技术壁垒。工艺升级及拓展性需求激光锡焊能量化工艺参数、提升良品率、降低成本,保证生产作业标准化。随着中国市场劳动力成本的提升以及技能型人才的稀缺,对传统锡焊领域人工需求慢慢转化为机械化作业需求,激光锡焊将突破传统工艺,引领风骚。从目前客户焊样的情况看,激光锡焊普及也是大势所趋。结论由于激光锡焊具有传统锡焊无可比拟的优势,必将在电子互联领域得到更加广泛的应用,具有巨大的市场潜能。

2023-09-06 14:27
来源:
英国真尚有发布于:广东省
研究高温金属的形变可以帮助我们更好地理解材料的性质和行为,从而为材料的设计和制造提供更好的指导。此外,高温金属的形变也与许多工业应用密切相关,例如航空航天、能源等领域。就拿航空航天领域来说,涉及到的高温金属形变测量主要包括钛合金、镍基合金、铝合金等金属材料和涡轮叶片、燃气轮机叶片等金属工件,温度范围一般在500℃以上,甚至可以达到1000℃以上。因为在航空航天等高温环境下,这些材料和工件需要承受高温、高压、高速等复杂的力学和热学作用,故而需要进行高温形变研究来评估其性能和寿命。因此,研究高温金属的形变具有非常重要的理论和实际意义。
虽然光学测位移技术已经在全球多个领域大量应用,但在实际研究过程中,想要精确测量到高温金属的形变并不容易。这是因为激光位移传感器在进行高温金属形变测量时,存在一些难点:高温环境下,激光传感器容易受到热辐射的影响,导致测量误差增大;高温金属表面容易出现氧化、腐蚀等情况或者存在液态金属或气体等物质,对激光传感器的测量造成干扰从而影响测量精度……
在高温金属检测领域,创新和精确是关键。英国真尚有经过多年的研究,开发并升级了惊人的ZLDS11X系列高温物体特殊测量传感器。这个开创性的系列是专门为超高温物体的精密变形测量而设计的,可测金属温度高达2200℃! ZLDS11X系列有三种不同的温度版本--高温、较高温度和超高温,是测量温度在500℃至2200℃的物体厚度、宽度、长度、高度、直径和轮廓的终极解决方案。
ZLDS11X系列测高温激光位移传感器的一个显著例子是它在Ta金属研究中的应用。Ta金属以其高熔点、强度和耐腐蚀性而闻名,被广泛用于航空航天、能源和电子工业。它在高温结构材料、电子设备和真空设备的制造中发挥着关键作用。研究Ta金属的高温变形状态往往需要超过2000℃的温度--这种挑战只有英国真尚有的ZLDS11X系列可以应对! ZLDS11X系列激光位移传感器即使是透过热镜保护玻璃依然可以准确测量超高温下的Ta金属,具有惊人的1um分辨率,±3um线性度,以及高达10Khz的超快测量频率!
此外,该系列传感器可配备水冷保护壳,保障其在高温环境下不被损坏。传感器水室的巧妙设计保证了有效的冷却和保护,使其能够在接近高温目标的地方运行。
虽然光学测量是一种流行的高温金属变形检测方法,但也有其他方法可供选择。例如,应变片,通过检测电阻片的变形,提供了一种直接测量应变的方法。这种方法适用于高温环境,但其精度受到电阻片本身的限制。另一方面,声学测量依靠声波的传播和反射来测量物体的变形。它也适用于高温环境,但由于声波传播的性质,在精确度方面面临着限制。每种测量方法都有自己的优势和劣势,根据手头的具体要求选择合适的方法是至关重要的。
返回搜狐,查看更多
责任编辑:

我要回帖

更多关于 激光检测仪的测量精度 的文章

 

随机推荐