为什么多肽链上每个肽键都参与氢键的形成在一定程度的pH变化下会形成一定的螺旋状?

第五章
蛋白质的三维结构
习题
1.(1)计算一个含有78个氨基酸的α螺旋的轴长。(2)此多肽的α螺旋完全伸展时多长?[11.7nm;28.08nm]
解:(1)α螺旋中每个残基绕轴旋转100°,沿轴上升0.15nm,故该α螺旋的轴长为:
78×0.15nm=11.7nm
(2) α螺旋每圈螺旋占3.6个氨基酸残基,故该α螺旋圈数为:78÷3.6圈;α螺旋的直径约为0.5nm,故每圈轴长为0.5πnm。完全伸展的α螺旋长度约为:0.5π×(78÷3.6)≌34.01nm。
2.某一蛋白质的多肽链除一些区段为α螺旋构想外,其他区段均为β折叠片构象。该蛋白质相对分子质量为240000,多肽链外姓的长度为5.06×10-5cm。试计算:α螺旋占该多肽链的百分数。(假设β折叠构象中每氨基酸残疾的长度为0.35nm)[59%]
解:一般来讲氨基酸的平均分子量为120Da,此蛋白质的分子量为240000Da,所以氨基酸残基数为240000÷120=2000个。设有X个氨基酸残基呈α螺旋结构,则:
X?0.15+(2000-X)×0.35=5.06×10-5×107=506nm
解之得X=970,α螺旋的长度为970×0.15=145.5,故α-螺旋占该蛋白质分子的百分比为:
145.5/536×100%=29%
3.虽然在真空中氢键键能约为20kj/mol,但在折叠的蛋白质中它对蛋白质的桅顶焓贡献却要小得多(&lt5kj/mol)。试解释这种差别的原因。[在伸展的蛋白质中大多数氢键的共体和接纳体都与水形成氢键。折旧时氢键能量对稳定焓贡献小的原因。]
4.多聚甘氨酸是一个简单的多肽,能形成一个具有φ=-80°ψ=+120°的螺旋,根据拉氏构象图(图5-13),描述该螺旋的(a)手性;(b)每圈的碱基数。[(a)左手;(b)3.0]
解:据P206图5-13拉氏构象图, =φ-80°ψ=+120°时可知该螺旋为左手性,每圈残基数为3.0。
5.α螺旋的稳定性不仅取决于肽链间的氢键形成,而且还取决于肽链的氨基酸侧链的性质。试预测在室温下的溶液中下列多聚氨基酸那些种将形成α螺旋,那些种形成其他的有规则的结构,那些种不能形成有规则的结构?并说明理由。(1)多聚亮氨酸,pH=7.0;(2)多聚异亮氨酸,pH=7.0;(3)多聚精氨酸,pH=7.0;(4)多聚精氨酸,pH=13;(5)多聚谷氨酸,pH=1.5;(6)多聚苏氨酸,pH=7.0;(7)多聚脯氨酸,pH=7.0;[(1)(4)和(5)能形成α螺旋;(2)(3)和(6)不能形成有规则的结构;(7)有规则,但不是α螺旋]
6. 多聚甘氨酸的右手或左手α螺旋中哪一个比较稳定?为什么?[因为甘氨酸是在α-碳原子上呈对称的特殊氨基酸,因此可以预料多聚甘氨酸的左右手α螺旋(他们是对映体)在能量上是相当的,因而也是同等稳定的。]
7.考虑一个小的含101残基的蛋白质。该蛋白质将有200个可旋转的键。并假设对每个键φ和ψ有亮个定向。问:(a

我要回帖

更多关于 肽键在碱性条件下水解 的文章

 

随机推荐