制备单晶硅的时候为什么是多晶会出现多晶和缺陷

  光伏组件(也被人们叫作太陽能板、光伏板)主要包括单晶组件、多晶组件还有薄膜组件。单晶和多晶组件有啥区别哪个好呢?

  单晶硅光伏组件是以高纯的單晶硅棒为原料的太阳能电池板目前广泛的应用于光伏市场中。单晶硅光伏组件光电转换率较高在弱光条件下表现比同类产品更好。哆晶硅光伏组件是由多晶太阳能电池片按照不同的串、并阵列排列而构成的多晶硅光伏组件性价比较高,交大光谷的多晶硅光伏组件的發电效率通常在17%左右

  单晶电池和多晶电池的初始原材料都是原生多晶硅,类似于微晶状态存在要具备发电能力,就必须将微晶状態的硅制成晶体硅而晶体硅的晶向需要精确控制。单晶电池和多晶电池在制程上唯一无法轻易互换的就是晶体生长环节

  在这个环節,原生多晶硅在单晶炉内会生产成单一晶向、无晶界、位错缺陷和杂质密度极低的单晶硅棒多晶晶体的生长工艺本身决定了它无法生長出大面积单一晶向的晶体(单晶),多晶的本质就是大量的小单晶的集合体

  单晶硅和多晶硅的区别是,当熔融的单质硅凝固时矽原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒則形成多晶硅。多晶硅与单晶硅的差异主要表现在物理性质方面例如在力学性质、电学性质等方面,多晶硅均不如单晶硅多晶硅可作為拉制单晶硅的原料。

  单晶硅可算得上是世界上最纯净的物质了一般的半导体器件要求硅的纯度六个9以上。大规模集成电路的要求哽高硅的纯度必须达到九个9。目前人们已经能制造出纯度为十二个9的单晶硅。单晶硅是电子计算机、自动控制系统等现代科学技术中鈈可缺少的基本材料

  从收益率角度来衡量,多晶组件明显比单晶好很多当然,这是阶段性结论如果哪天单晶成本低于多晶,结論就会相反了对于用户来说,选择单晶硅还是多晶硅好并不重要选择综合收益最重要!产品的质量是决定电站收益最重要的因素。你嘚产品质量好你赚的就多。无论是单晶还是多晶都是同样的道理。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载文章观点仅代表作者本人,不代表电子发烧友网立场文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题请联系本站作侵删。 

发布时间: 来源:PV-Tech每日光伏新闻

夶比例黑硅制绒技术已经规模化应用协鑫、阿特斯、韩华等领军企业已经实现了黑硅PERC吉瓦级的量产,证明多晶黑硅与单晶一样完全兼容PERC電池产线而且,多晶黑硅叠加PERC技术后可得到额外收益实现了累加更优的效果。“金刚线+黑硅+PERC”将助推高效多晶组件跨越300瓦大关成为高效多晶产品的主流。

过去几年多晶硅已经成为光伏行业的主流技术,占据了大部分的市场份额然 而,多晶硅领域的行业巨头们正面臨着来自单晶硅的高效率和快速降低的成本方面的巨大压力 因此,现在急需在多晶硅电池的大规模 生产中采用革新的技术例如金刚石線锯、黑硅制绒和PERC等以提升效率并降低成本。

到了2017年第三季度CSI已经成功在其多晶硅电池产线上应 用了金刚石线锯和最先进的 黑硅制绒技術,总产能达到了4.5GW 且大规模生产下的平均效率超过了19.2%[1]。不过在多晶硅电池上集成PERC技术存在诸多困难,其中包括光致衰减(LID)以及光致 高温致衰减(LeTID)[2-6]等效应根据UNSW和一些其他研究机构的报道,多晶硅PERC 目前存在两种衰减模式:1)快速衰减模式发 生在初始光照的100 小时以内,这种衰减是甴第一种衰减效应引起的;2)缓慢衰减模式衰减过程发 生在1000小时以内,是由第二种衰减效应引起的[3]尽管如此,由韩华Q-CELLs报道的多晶硅PERC LeTID效应让這项技术备受关注[5,6]

CSI通过结合硅锭材料控制、电池工艺优化、先进的在线控制技术,实现了LID可控多晶硅PERC电池和组件的 大规模 生产到2017年 底產能超过了1GW,并将在2018年 底提升至4GW以上本文将展示CSI多晶硅PERC电池和组件的性能,同时介绍能实现多晶硅PREC电池和组件LID可控的解决方案

多晶硅PERC電池和组件的性能

图一展示了 CSI 高效多晶硅PERC电池的工艺流程;同时还给出了非PERC电池的工艺流程用于对比。在完成CSI具有知识产权的最先进 黑硅制絨( 金属催化化学刻蚀-MCCE)步骤之后将电池放到管式炉中进行低压POCl3扩散以形成n+-Si发射极。然后在下一步移除磷硅酸盐玻璃(PSG)和清除电池背面

图一:分别展示了传统多晶硅电池(左)和CSI的高效多晶硅PERC电池(右)的工艺流程。

使用原子层沉积(ALD)技术形成的Al2O3层被用于进行背面钝化沉积形成的Al2O3层还偠进行一次后沉积退火,这一步被集成在随后的背 面SiNx减反射膜(ARC)沉积工艺上采用的是管式等离子增强化学 气相沉积(PECVD) 工艺。 而前表 面SiNx ARC也同样昰采用管式PECVD 工艺完成的

在进行激光电极开窗操作之后,采用丝网印刷和共烧结工艺完成金属电极制作随后对所有完成烧结的多晶硅PERC电池进行一道电流引入再生(CIR) 工艺,最后在进行测试和分档

图二展示了CSI多晶硅PERC电池的效率分布情况;其中,平均电池效率超过了 20% 比同样基于金刚石线锯(DWS)硅片技术的传统多晶硅电池技术高出0.9%。

图二:(a)多晶硅PERC电池的效率分布(b)60 片和120片多晶硅PERC组件的功率分配。

表一 比较了多晶硅PERC和传統黑硅多晶硅电池的I-V特性相比于后者,多晶硅PERC电池的开路电压Voc提升了 13.6%短路电流Isc提升了320mA。

表 一:多晶硅电池和传统 黑硅多晶硅电池之间嘚I-V特性差异

如图二(a)所示,在组件性能方面标准60片电池多晶硅PERC组件的平均功率超过了 287W,与同类型单晶硅组件相当在结合使用半切片和哆主栅等组件技术之后,标准120 片电池多晶硅PERC组件的平均功率超过了300W如图二(b)所示;这一表现同样与同类型单晶硅组件相当。显然多晶硅PERC技術的使用增强了多晶硅性能竞争力 ,并降低了成本

图三:硅片质量对多晶硅PERC组件性能衰减的影响。

在LID问题上多晶硅PERC 面临的挑战比单晶矽PERC更多。最直接的体现是对于很多能够生产高质量高可靠性的单晶硅PERC组件的制造商之中,却只有很少部分能够生产多晶硅PERC组件[7]

UNSW和其他研究机构提出了两种衰减模式,包括1)由名为类型1缺陷引起的在100 小时内发 生的快速衰减模式以及由名为类型2缺陷引起的在1000 小时内发 生的慢速衰减模式。类型1缺陷已经确认是B-O复合缺陷而类型2缺陷则还未被完全解释。根据猜测类型2缺陷由氢[8]或 金 属杂质例 如Fe、Co和Ni[9]引起的可能性朂大。UNSW最近报道了这些类型1缺陷和类型2缺陷同样出现在了 p型单晶硅和n型单晶硅组件上[10]

为了解决LID—这种多晶硅PERC所面临最具挑战的问题,CSI采取了多项技术创新:

1. 采用一项独特的硅锭铸造工艺以控制多晶硅硅片材料的杂质含量

2. 优化电池工艺,特别是与金属电极相关的工艺以抑制缺陷复合体的形成并增强多晶硅硅块内氢钝化效果。

3. 采用先进的恢复工艺以解除引起LID的缺陷中心

4. 一套增强型线上工艺控制体系以制慥可靠的LID可控多晶硅PERC电池和组件。

多晶硅PERC电池的衰减速率决定于硅锭和硅片材料的质量 对于多晶硅硅锭,常 见的衰减趋势是从硅锭顶部箌底部衰减速率逐渐增加此外,还有其他各种能引起衰减速率增加的因素例 如电阻率或掺杂浓度、氧含量 和结构缺陷密度等。衰减速率还与施主B元素或Ga元素或者B与Ga化合物有关;Ga掺杂或部分Ga掺杂所带来的收益是被普遍认可的图三展示了 由电致衰减(CID)测得的经过质量 控制的和普通的多晶硅硅 片之间在多晶硅PERC组件衰减 方 面的巨 大差异。

烧结温度对衰减的显著影响已经被 广泛认识到[11,12]降低烧结 工艺时的峰值温度或減缓冷却速度都有助于 大幅降低衰减速率。已经有许多 文章提出了 解释这些发现的理 论[11-14];其中的解释包括降低烧结温度将抑制缺陷的形成同時/或者改变多晶硅硅锭中氢的含量

降低多晶硅PERC电池衰减速率的关键因素在于提升恢复工艺。 用于分解导致LID的缺陷中心的恢复 工艺包括过剩载流子注入、恰当的温度和持续时间[15]通常,使用卤素灯、LED或激光来进行单晶硅PERC的光致恢复(LIR)操作;然 而 工业LIR工艺并不适用于多晶硅PERC。 而CSI使用了合适的CIR工艺;相 比于LIRCIR有着诸多优势,例如更宽的工艺窗 口更高的产能,更低耗电和更 低的成本通过使用CIR工艺,衰减速率可以降低80%

图四显示了 由CID测试所得的,经过CIR处理 后降低的衰减速率与未经过CIR处理 的衰减速率之间的关系从图中可以看到,多晶硅PERC电池在未经过CIR處理 时CIDw/o CIR 的衰减速率越高反应在降低衰减速率上的缓解系数CIDw/o CIR-CIDCIR就越大。有趣的是CIDw/o CIR-CIDCIR和CIDw/o CIR之间存在拟线性关系,表明CIR 工艺有效地钝化了 导致LID的缺陷中 心不仅如此,我们还可以看到来 自某些供应商(供应商1到4)的硅 片质量 并不令人满意在没有经过CIR处理 的情况下衰减速率非常高。这再┅次表明控制硅锭和硅 片材料 质量 对 生产LID可控的多晶硅PERC电池的重要性

图四:CIR 工艺的LID衰减率。

控制多晶硅PERC电池LID 比单晶硅PERC更 具有挑战性的原洇主要是多晶硅硅 片的质量 波动更大[6]尽管已经采取了创新步骤来控制多晶硅锭的杂质浓度,仍然有必要增强线上的控制;这除了推进工艺優化之外还需要对电池层面上的衰减速率进行更加严密的监控。

通常硅太阳能电池LID是通过光浸润测试的;然而该技术存在一定缺陷,例 洳测试时间太 长(通常为24-72 小时)、硅 片温度控制不精确同时限制了 样品数量 为了测试多晶硅PERC电池的LID性能,CSI使用CID 方法有以下几种优势,如表格二所示

表格二描绘了 CID 方法的设置。CID 方法的参数为前置偏压注入电流、硅片温度和时间这些参数是经过大范围的实验评估仔细挑选出來的,以尽可能反应PERC电池的衰减速率实际上,如果将注入电流和硅片温度参数设置为特定值会导致恢复占主要的效应那么就是CIR 工艺;相反,如果是更 低的注 入电流和硅 片温度导致恢复占主要的效应那么就是CID工艺。所选择的CID参数为3.5A105℃以及4小时,相当于在1,000W/m2光浸润下的测试LID;此外取样 比例 等于每条电池产线 里 总电池数量 的0.08%。这 一策略 的使 用将带来多晶硅PERC电池良好的CID控制低至1%。

表二:CID相对于LID在测试多晶硅电池衰减性能方面的优势

对于组件衰减测试,CID 方法还被 用于替代室内或室外光浸润 方法采 用韩华Q-CELLS的设备和参数。图五显示了 多晶硅PERC组件囷传统多晶硅组件之间CID衰减的对 比该图表明多晶硅PERC组件衰减速率的提升,相 比于传统多晶硅组件不 过,在300 小时后多晶硅PERC组件稳定性衰减速率,证明 比 高达500 小时的低1.5%;这相当于两年 的户外热环境测试韩华Q-CELLS报道[16]。

图五:CID测试下CSI多晶硅组件的性能

所有电池和组件衰减结果表明,在实 行 几项创新步骤之后CSI多晶硅PERC电池和组件的LID现象可以被成功控制。

CSI致力于生产高效多晶硅电池和组件在2017年里CSI技术和产品都实現了快速的演进,并预计在2018年仍将持续如图六所示。到了2017年第三季度传统P2(砂浆切割硅片和酸制绒)将被淘汰,并全面升级 至P3( 金 刚 石切割矽 片和 黑硅制绒)总产能 高达4.5GW。此外从2017的第三季度,P4( 金 刚 石切割硅 片、 黑硅制绒和多晶PERC)将要引入到2018年 产能将超过4GW。下 一代 高效多晶硅產品P5将从2018的第三季度开始并将逐渐获得更 大的市场份额。

在现有平均效率超过20%的P4产品基础上下 一步将整合先进技术(包括双 面发电、选擇性发射极、多主栅和浆料优化等) 至P4+,使效率提升至20.6%再往下 走的 目标是提升 至下 一代硅 片技术P5,效率提升至21.5%并最终在P5+阶段提升至22%。

通過材料 、电池工艺、先进恢复和增强线上工艺控制的创新CSI已经成功证明了 LID可控多晶硅PERC电池和组件能实现GW级的生产。多晶硅PERC技术是 高效多晶硅产品必备的技术才能与高产能的单晶硅产品竞争。为了进一步提升竞争力 通过双面多晶硅PERC以及先进技术的整合来进一步推动效率臸更高,是非常有必要的

我要回帖

更多关于 什么是多晶 的文章

 

随机推荐