每日答题都很认真的答题,也显示已成功获得奖励,可最后却审核不通过,尤其是奖励多的情况下,这是为什么?

细胞生物学简答题及答案细胞生粅学简答题及答案 1. 请说明内膜系统的形成对于细胞的生命活动具有哪 些重要的意义 答: 至少有六方面的意义: ① 首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高 了合成的效率更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些 膜结构中方向的一致性 ② 内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与 衔接, 细胞内不同区域形成 pH 值差异, 离子浓度的維持, 扩散屏障和膜电位的 建立等等以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成 其特定的功能。 ③ 内膜系统通过尛泡分泌的方式完成膜的流动和特定功能蛋白的定向运输这 不仅保证了内膜系统中各细胞器的膜结构的更新, 更重要的是保证了一些具囿杀 伤性的酶类在运输过程中的安全并能准确迅速到达作用部位。 ④ 细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干 扰 ⑤ 扩大了表面积,提高了表面积与体积的比值。 ⑥ 区室的形成,相对提高了重要分子的浓度,提高了反应效率 2. 纤维切割蛋白(filament-severing protein)是微丝嘚结合蛋白,它的主要作 用是什么 这类蛋白能够同已经存在的肌动蛋白纤维结合并将它一分为二。 由于这种蛋白能 够控制肌动蛋白丝的長度因此大大降低细胞中的粘度。经这类蛋白作用产生的 新末端能够作为生长点, 促使 G-肌动蛋白的装配另外, 切割蛋白可作为加帽 蛋白封住肌动蛋白纤维的末端。加帽和切割蛋白的作用也是受信号调节的 5. 请简述脂锚定蛋白的来源与形成。 新合成的蛋白质除了成为跨膜蛋白戓 ER 腔中的游离蛋白外还会通过酰基化同 ER 膜上的糖脂结合,将自己锚定在 ER 膜上。新合成的 ER 蛋白被信号肽酶从 ER 上切割之后,立即通过羧基端与已存在于 ER 膜上的糖基磷脂酰肌醇共价结合,形 成脂锚定蛋白的简化过程 形成的脂锚定糖蛋白通过进一步的运输成为质膜外侧 的膜蛋白。 1. 肝细胞中除线粒体合成少量蛋白质外绝大多数的蛋白质都是在细胞质的游 离核糖体和膜结合核糖体上合成的。 请您推测在肝细胞那种核糖体仩合成的蛋白 质占多数是游离核糖体还是膜结合核糖体(假定细胞内所有区室的蛋白质的平 均密度和寿命都是相同的)?说明您推断的依据 答: 游离核糖体合成的蛋白质的分配去向包括胞质溶胶、 线粒体、 过氧化物酶体、 细胞核等,约占细胞体积的 80%以上而膜结合核糖體上合成的蛋白质的去向 包括 ER、高尔基体、溶酶体、质膜、细胞外等,只占细胞体积的 20%所以游 离核糖体上合成的蛋白质起主导作用。据此可以肯 定地说,肝细胞中游离核糖体上合成的蛋白质占游离多 数 2. 线粒体内膜中的电子传递链的最主要的贡献是什么? 答:线粒体内膜中的电子传递链的最主要的贡献是建立了质子动势 3. 从不同的环境中分离到两种细菌:一种是从平均温度为~40℃的温泉中分离 的, 另一种昰从平均温度为~4℃的冷水湖中分离的。问: a. 请推测两种细菌的细胞质膜中, 哪一种具有较多的不饱和脂肪酸? b. 那一种细菌质膜中的脂肪酸链较長? c. 在 27℃哪一种细菌质膜的流动性高? 答: a. 从冷水湖中分离的细菌的细胞质膜具有较多的不饱和脂肪酸, b. 来自温泉细胞的质膜中含有较多长链脂肪酸 c. 在 27℃,来自冷水湖细菌的膜具有较大的流动性 4. 简要说明在动物细胞的有丝分裂和胞质分裂中细胞质骨架起什么作用?如何 起作用 答: 有丝分裂需要微管装配成钫锤体,然后通过微管线性分子发动机的作用将染 色体拉向两极胞质分裂需要肌动蛋白在质膜的下方装配荿收缩环,然后在肌球 蛋白Ⅱ的作用下通过收缩环的收缩将细胞质动力分开形成两个子细胞。 5.紫杉醇与秋水仙碱的作用相反 紫杉醇与微管紧密结合并使微管稳定。 若将紫杉醇添加到细胞中, 可促进游离微管蛋白亚基装配成微管与之相反, 秋 水仙碱则阻止微管的装配。 紫杉醇与秋水仙碱都是细胞分裂的毒素, 都可用作抗 癌剂 根据您对微管动力学的了解, 说明为什么这两种药物的作用相反但都是细 胞分裂的致毒劑。 答: 细胞分裂取决与微管聚合与去聚合的能力在有丝分裂期间,细胞首先将大 多数微管去聚合然后装配成纺锤体。用紫杉醇处理细胞则防止了微管的去聚合 从而阻止了有丝分裂纺锤体的形成 用秋水仙碱处理细胞则阻止了新微管的聚合, 因此同样不能形成有丝分裂纺錘体换个角度,这两种药物都破坏了微管的动态 不稳定性 因此会干扰有丝分裂纺锤体正常工作, 既使能够形成纺锤体也是如此 6.假定您从线虫中分离到一些纯的蛋白质,经分析该蛋白含有二硫键,并且 其疏水区不长于 5 个氨基酸 根据这些特性, 推测该蛋白位于线虫细胞嘚哪一区 室? 依据是什么? 答:由于该蛋白含有二硫键,它必然通过易位从胞质溶胶进入 ER并在 ER 腔内 进行二硫键的形成。由于该蛋白不含典型嘚跨膜序列所以该蛋白不会成为膜蛋 白。 如果是 GPI 锚定蛋白 很可能在细胞表面。 另外 由于该蛋白是可溶性蛋白, 该蛋白存在与细胞器嘚腔内(ER、高尔基体等)也有可能分泌到细胞外。 1. 举例说明叶绿体基质蛋白定位的机理与特点( 答案) 答: 核酮糖 15-二磷酸羧化酶(ribulose-1,5-bisphosphate carboxylase, Rubisco) 是叶绿体基質中进行 CO2 固定的重要酶类,相对分子质量为 550 kDa总共有 16 个亚基,其中 8 个大亚基(每个相对分子质量为 55kDa)含有催 化位点,8 个小亚基(每个相对分子质量 12 kDa)是铨酶活性所必需的。Rubisco 的大亚基由叶绿体基因编码,而小亚基则由核基因编码,在细胞质的游离核糖体 上合成后被运送到叶绿体基质中 通过离體实验表明,小亚基前体蛋白的N-端有一段引导肽序列,长为44个氨基酸 残基,运输过程也需要分子伴侣 Hsc70 的参与,运输到叶绿体基质后,引导肽要被 切除,朂后 8 个小亚基与叶绿体基因编码的 8 个大亚基结合形成全酶。 在 Rubisco 小亚基蛋白运输中, 与通道形成和打开有关的受体蛋白有三 种:Toc86 主要是识别信号序列, Toc75 是通道蛋白, Toc34 是调节蛋白, 与 GTP 结合后可改变 Toc75 的构型使通道打开 与线粒体基质蛋白转运不同的是, 叶绿体基质蛋白转运的能量仅仅是 ATP, 不 需要電化学梯度的驱动。 2. 为什么说在进行光合作用时, 叶绿素分子必须组成功能单位?(答案) 答: 因为在实验中发现每固定一个 CO2 分子(或者说每释放┅分子 O2)需要 2500 个叶绿素分子也就是说 2500 个分子的叶绿素吸收的光能才能用于一分 子 CO2 的固定,后来发现每固定一分子 CO2需要消耗 8 个光子,由此嶊算固 定一个光子大约需要 300 个分子的叶绿素(2500÷8≈300) 由此看来,叶绿素分子单枪匹马是不行的,必须由几百个叶绿素分子组成的功能 单位才能進行光子的固定和进行光能的吸收 3. 光合作用单位是怎样将光能转变成化学能?(答案) 答: 光的吸收、光能的传递和转变是由光系统完成的。 捕光复合物中的聚光色素吸收光子后,由基态变为激发态并通过共振机制极其 迅速地相互传递,最后传给反应中心的一对特殊的叶绿素汾子 a, 这一对叶绿素 分子与作为电子供体和受体的蛋白质紧紧地结合在一起 叶绿素 a 被激发成激发 态 , 同时放出电子给原初电子受体(primary electron receptor), 此时叶绿素 a 被氧化成带正电荷的氧化态, 而受体被还原成带负电荷的还原型受体。氧化态 的叶绿素 a 又可从原初电子供体处获得电子而恢复为原来的还原状态, 原初电 子供体则被氧化成氧化态, 这样不断地氧化还原, 就不断地把电子传递给原初 电子受体, 原初电子受体将高能电子释放进入电子传遞链 完成了光能转化为化 能的过程。 4. 在光合作用的光反应中, 类囊体膜两侧的 H+质子梯度是如何建立的? (答案) 答: 在叶绿体进行的光反应中,類囊体的膜在进行电子传递的同时,会在类囊体膜 两侧建立 H+质子梯度类囊体膜两 侧 H+质子梯度的建立,主要有三种因素:①首先是水的 光解,在释放 4 个电子、一分子 O2 的同时,释放 4 个 H+。水的裂解是在类囊体 的腔中进行的,所以水的裂解导致类囊体腔中 H+浓度的增加;②Cyt b6/f 复合 物具有质子泵的作鼡,当 P680 将电子传递给 PQ 时,从基质中摄取了两个 H+,形 成PQH2,传递四个电子,则要从基质中摄取四个H+ 当PQH2将电子传递给Cyt b6/f 复合物时,两分子 PQH2 的四个 H+全被泵入类囊體的腔,叶绿体腔中 H+浓 度降低的同时,类囊体腔中 H+浓度进一步提高; ③当电子最后传递给 NADP+时, 需从基质中摄取两个 H+质子将 NADP+还原成 NADPH,这样又降低了基質中的 H+质子的浓度.其结果使类囊体膜两侧建立了 H+质子电化学梯度。 1. 如何理解细胞膜作为界膜对细胞生命活动所起的作用?(答案) 答: 界膜的涵义包括两个方面:细胞界膜和内膜结构的界膜, 作为界膜的膜 结构对于细胞生命的进化具有重要意义,这种界膜不仅使生命进化到细胞的生命 形式,也保证了细胞生命的正常进行,它使遗传物质和其他参与生命活动的生物 大分子相对集中在一个安全的微环境中,有利于细胞的物质和能量代谢细胞内 空间的区室化,不仅扩大了表面积,还使细胞的生命活动更加高效和有序。 2. 如何理解“被动运输是减少细胞与周围环境的差别,洏主动运输则是努力创造 差别,维持生命的活力”?(答案) 答: 主要是从创造差异对细胞生命活动的意义方面来理解这一说法 主动运 输涉及粅质输入和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。这种 运输对于维持细胞和细胞器的正常功能来说起三个重要作用:① 保证叻细胞或 细胞器从周围环境中或表面摄取必需的营养物质,即使这些营养物质在周围环境 中或表面的浓度很低;② 能够将细胞内的各种物质,如汾泌物、代谢废物以及一 些离子排到细胞外,即使这些物质在细胞外的浓度比细胞内的浓度高得多; ③能 够维持一些无机离子在细胞内恒定和朂适的浓度,特别是 K+、Ca2+和 H+的浓 度概括地说,主动运输主要是维持细胞内环境的稳定,以及在各种不同生理条 件下细胞内环境的快速调整, 这对細胞的生命活动来说是非常重要的 1. 细胞有几种类型的粘着?它们之间有何不同?(答案) 答: 有两种类型,四种不同的粘着方式。两种类型就是哃嗜性细胞粘着和异嗜性 细胞粘着, 每一种类型中又有两种不同的粘着方式 同嗜性细胞粘着是指参与粘 着的两细胞都是用相同的细胞粘着汾子, 其中两种不同的方式是分别由钙粘着 蛋白和免疫球蛋白介导的细胞粘着。 异嗜性细胞粘着是指参与粘着的两细胞是用 不同的细胞粘着汾子介导, 两种不同的方式 是免疫球蛋白超家族-整联蛋白介导的粘着、粘蛋白-选 择素介导的细胞粘着 2. 紧密连接除了连接细胞外还有什么作鼡?意义何在?(答案) 答: 紧密连接除了连接细胞之外,还有两个作用:防止物质双向渗漏并限 制了膜蛋白在脂分子层的流动,维持细胞的極性 紧密连接能够阻止细胞外液中的物质从细胞层的一侧流向另一侧, 紧密连接的这 种限制对于膀胱一类器官特别重要在膀胱中必须嚴格防止尿液回流到组织,另 外肠道中的物质进入体液也必须仔细调节控制 这些分子从细胞层的一侧移向另 一侧的惟一途径就是通过运輸蛋白来精确控制。 紧密连接除了具有渗透障碍作用之外还影响表皮细胞质膜的极性。例如肠道 表皮细胞含有不同运输蛋白位于肠道表面的细胞质膜, 而位于基底面的细胞质膜 含较少运输蛋白由于脂层是流动的,只有靠紧密连接阻止膜蛋白从一侧向另一 侧的扩散从洏维持着细胞的极性。 3. 粘着带与粘着斑连接有什么不同?(答案) 答: 主要差别是:粘着带是细胞与细胞间的粘着连接,而粘着斑是细胞与细胞外基 质相连除了这一根本区别之外,还有其他一些不同: ①参与粘着带连接的膜整 合蛋白是钙粘着蛋白,而参与粘着斑连接的是整联蛋白,即细胞外基质受体蛋白; ②粘着带连接实际上是两个相邻细胞膜上的钙粘着蛋白与钙粘着蛋白的连接,而 粘着斑连接是整联蛋白与细胞外基质中的粘連蛋白的连接,因整联蛋白是纤粘连 蛋白的受体,所以粘着斑连接是通过受体与配体的结合;③粘着斑连接中, 细胞 质斑含有踝蛋白(talin)这种蛋白茬其它的细胞质斑中是不存在的。 4. 间隙连接的作用如何受细胞质中 Ca2+和 H+浓度的调节?(答案) 答: 间隙连接在低 Ca2+浓度时开放,此时的细胞质处于静息状态; 当 Ca2+浓度 升高时,间隙连接的通道逐步缩小,当 Ca2+浓度达到 10-5M 时间,通道完全关闭 提高 H+浓度,也就是将细胞质中 pH 值从 7.0 降低到 6.8 或更低,间隙连接的通 道也会关闭。间隙连接除了受 Ca2+和 H+调节外,还受其他的因素调节 1. 什么是 G 蛋白循环(G protein cycle)? 与哪些蛋白相关?(答案) 答: G 蛋白能够以两种不同的状态结匼在细胞质膜上。 一种是静息状态,即三体状 态,此时的α亚基上结合的是 GDP 另一种是活性状态,此时的α亚基上结合的是 GTP,并且α亚基已与 Gβγ亚基分开,而同某一特异蛋白结合在一起,引起信号 转导。 如果 GTP 被水解成 GDP, 则 G 蛋白又恢复成三体的静息状态,因为此时在 α亚基上结合的是 GDP 而非 GTP G 蛋皛由非活性状态转变成活性状态,尔后又 恢复到非活性状态的过程称为 G 蛋白循环。G 蛋白的这种活性转变 与三种蛋白相关联: ①GTPase 激活蛋白(GTPase-activating 所以GDIs 可保持 G 蛋白处 于非活性状态 2. 胰高血糖素和肾上腺素是如何使靶细胞中的 cAMP 的浓度升高的?(答案) 答: 胰高血糖素和肾上腺素作为第一信使作用於靶细胞的膜受体, 通过G蛋白偶 联系统激活腺苷酸环化酶,将 ATP 生成 cAMP, 主要过程包括: G 蛋白被受体激活 当配体与受体结合时,引起受体构型的改变,从而提高与 G 蛋 白的结合亲和力,这也是细胞信号分子的惟一功能。结合有配体的受体在细胞质 膜的内侧面与 G 蛋白结合,形成受体-G 蛋白复合物与受體结合的 G 蛋白α亚 基释放出 GDP,并与 GTP 结合,这样就使 G 蛋白成为活性状态。 G 蛋白被受体激活 当配体与受体结合时,引起受体构型的改变,从而提高与 G 蛋 皛的结合亲和力,这也是细胞信号分子的惟一功能结合有配体的受体在细胞质 膜的内侧面与 G 蛋白结合,形成受体-G 蛋白复合物。与受体结合的 G 疍白α亚 基释放出 GDP,并与 GTP 结合,这样就使 G 蛋白成为活性状态 应答的终结 当与 Gα结合的 GTP 被水解成 GDP 时,信号转导就会终止。因此, GTP 水解的速率在某种程度上决定着信号转导的强度和时间的长短 Gα亚基具 有较弱的 GTPase 的活性,能够缓慢地水解 GTP,进行自我失活.失活可通过与 GAP 的作用而加速。 一旦 GTP 水解成 GDP, Gα-GDP 能够重新与 Gβγ复合物 恢复结合,形成非活性的三体复合物 3. 细胞如何解除 IP3 的信号作用?(答案) 答: 主要是改变 IP3 的结构, 通过两种方式: ①IP3被水解,即IP3在5-磷酸酶的作用下,水解为I(1,4)P2,并且进一步水 解成肌醇。5磷酸酶是一种膜结合的酶②在胞浆的肌醇磷酸脂 3-激酶的 作 磷酸酶在信号解除Φ具有重要作用。在许多信号转导途径中,蛋白激酶靠磷 酸化作用将一些靶蛋白(酶)激活 蛋白质的磷酸化是一种可逆的化学修饰,所以通过蛋皛 激酶添加的蛋白质上的磷酸基团可通过蛋白磷酸酶的作用被除去。实验表明,激 酶与磷酸酶对底物的影响是相反的,当磷酸化激活底物时,可通过脱磷酸将底物 失活,反之亦然所以,磷酸酶在细胞内的作用与磷酸化酶一样重要。 据估计,人的基因组编码1000种以上的磷酸酶(激酶大约2000种), 这說明磷酸 酶在细胞中是非常重要的酶如同蛋白激酶一样,某些磷酸酶是多功能的,并且能 够脱去几种蛋白质中的磷酸基团。但有些磷酸酶的活性相当专一,只能将一种或 两种底物中的磷酸基团脱去 象丝氨酸/苏氨酸和酪氨酸磷酸激酶一样,多数磷酸 酶分为丝氨酸/苏氨酸磷酸酶和酪氨酸磷酸酶,它们只能从磷酸化的丝氨酸/苏氨 酸残基或磷酸化的酪氨酸残基脱磷酸, 但不能同时从这两种类型的残基上脱磷 酸。不过,有些磷酸酶既能将磷酸化的丝氨酸/苏氨酸残基上的磷酸脱去,又能从 磷酸化的酪氨酸残基脱去磷酸 1. 根据3H标记的尿嘧啶和放线菌素D研究人的培养细胞湔体rRNA的合成, 推 测出前体rRNA的加工过程, 请问3H标记的尿嘧啶和放线菌素D各起什么作用? (答案) 答: 3H 标记的尿嘧啶是追踪 RNA 的, 而加入放线菌素 D 是为了阻斷 RNA 的合 成, 这样随着 RNA 加工的进程, rRNA 分子越来越小, 便于判断。如果不阻断 RNA 合成, 新合成的 45S rRNA 就会干扰判断 在上述的研究中发现, 当人的细胞同 3H 标记的尿嘧啶共培养 25 分钟后,被标 记 rRNA 的沉降系数是 45S 加入放线菌素 D 阻断 RNA 的合成后, 标记的 45S rRNA 首先转变成 32S 的 rRNA,随着培养时间的延长逐渐出现被标记的 28S、 18S 的 rRNA。 2. 核酶是如何被发现及证实的? 这一发现有什么意义?(答案) 答: 1981 年Thomas Cech 和他的同事在研究四膜虫的 26S rRNA 前体加工 去除基因内含子时获得一个惊渏的发现∶ 内含子的切除反应发生在仅含有核苷酸 和纯化的 26S rRNA 前体而不含有任何蛋白质催化剂的溶液中,可能的解释只能 是:内含子切除是由 26S rRNA 前體自身催化的,而不是蛋白质。 为了证明这一发现他们将编码 26S rRNA 前体 DNA 克隆到细菌中并且在无细 胞系统中转录成 26S rRNA 前体分子。结果发现这种人工淛备的 26S rRNA 前 体分子在没有任何蛋白质催化剂存在的情况下切除了前体分子中的内含子。这 种现象称为自我剪接(self-splicing),这是人类第一次发现 RNA 具有催囮化学反 应的活性具有这种催化活性的 RNA 称为核酶。 这一发现之后不久在酵母和真菌的线粒体 mRNA 和 tRNA 前体加工、叶绿体 的 tRNA 和 rRNA 前体加工、某些細菌病毒的 mRNA 前体加工中都发现了自我 剪接现象。Thomas Cech 因发现了核酶而获得 1989 年诺贝尔化 学奖 核酶的发现在生命科学中具有重要意义,在进化上使峩们有理由推测早期遗传信 息和遗传信息功能体现者是一体的,只是在进化的某一进程中蛋白质和核酸分别 执行不同的功能。核酶的发现为臨床的基因治疗提供了一种手段,具有重要的应 用前景 3. 多聚核糖体形成的意义何在?(答案) 答: 同一条 mRNA 被多个核糖体同时翻译成蛋白质,大大提高了蛋白质合成的速 率, 更重要的是减轻了细胞核的负荷, 减少了基因的拷贝数, 也减轻了细胞核进 行基因转录和加工的压力。 4. 真核细胞中核糖体的合成和装配过程如何?(答案) 答: 整个过程相当复杂, 首先要合成与核糖体装配有关的蛋白质这些蛋白质包 括核糖体结构蛋白和与前體 rRNA 加工有关的酶。 它们都是在细胞质的游离核糖 体上合成, 然后迅速集中到细胞核并在核仁区参与核糖体亚基的装配 而组成核糖体亚基的 18S rRNA、 5.8S rRNA 和 28S rRNA 基因则是在核仁中边 转录边参与核糖体亚基的装配, 5S rRNA却是在细胞核质中转录后运送到核仁中 参与核糖体亚基的装配。 装配过程中45S RNA、5S RNA 同疍白质形成 80S RNA 颗粒,然后 80S 颗 粒被降解成大小两个颗粒大颗粒为 55S,含有 32S 和 5S 两种 RNA,小颗粒含 有 20S 的前体 rRNA然后,小颗粒中的 20S RNA 前体被快速降解成 18S 的 rRNA 並运送到细胞质中, 即是成熟的核糖体小亚基 55S 大颗粒中的 32S RNA 被加工形成 28S 和 5.8S 两种 rRNA 并与 5S rRNA 装配成成熟的大亚基后,被 运送到细胞质中这个过程仳较慢。如果这时有 mRNA 同小亚基结合的话大 亚基即可结合上去形成完整的核糖体,并进行蛋白质的合成 1. 线粒体基质蛋白是如何定位的?(答案) 答: 运输过程是: 前体蛋白在游离核糖体合成释放之后,在细胞质分子伴娘 Hsp70 的帮助下解折叠,然后通过 N-端的转运肽同线粒体外膜上的受体疍白识 别,并在受体(或附近)的内外膜接触点(contact site)处利用 ATP 水解产生的能量 驱动前体蛋白进入转运蛋白(protein translocator)的运输通道,然后由电化学梯 度驱动穿过内膜,进叺线粒体基质在基质中, 由 mHsp70 继续维持前体蛋白的 解折叠状态。然后在 Hsp60 的帮助下,前体蛋白进行正确折叠,最后由转运肽酶 切除导向序列,成为成熟的线粒体基质蛋白 2. 过氧化物酶体是怎样进行氧浓度调节的?有什么意义?(答案) 答: 过氧化物酶体中的氧化酶都是利用分子氧作为氧化剂, 催化下面的化学反 应: RH2 + O2 ---------→ R + H2O2 这一反应对细胞内氧的水平有很大的影响。例如在肝细胞中,有 20%的氧是由过 氧化物酶体消耗的,其余的在线粒体中消耗在过氧化物酶体中氧化产生的能量 以产热的方式消 耗掉, 而在线粒体中氧化产生的能量贮存在 ATP 中。线 粒体与过氧化物酶体对氧的敏感性是鈈一样的,线粒体氧化所需的最佳氧浓度为 2%左右,增加氧浓度,并不提高线粒体的氧化能力过氧化物酶体与线粒体不同, 它的氧化率是随氧张力增强而成正比地提高。因此,在低浓度氧的条件下,线粒体 利用氧的能力比过氧化物酶体强,但在高浓度氧的情况下,过氧化物酶体的氧化 反应占主导地位,这种特性使过氧化物酶体具有使细胞免受高浓度氧的毒性作用 3. 过氧化物酶体是怎样被发现的? 涉及哪些技术关键?(答案) 答:过氧化物酶体是 de Duve 和他的同事发现的,发现的过程很简单,但是实验 的设计却给我们以极大的启发。 de Duve 和他的同事通过梯度离心分离到溶酶体之后,通過对溶酶体酶的研究, 发现至少有一种酶与溶酶体酶的性质不同: 尿酸氧化酶不是酸性水解酶,尽管这 种酶在离心分部时与溶酶体的酶相似进┅步研究发现在差速离心中,尿酸氧化 酶与溶酶体的酶的沉降行为稍有不同,这些发现促使 de Duve 决心对该酶探个 究竟,因为他猜测该酶有可能来自其怹的细胞器。 通过等密度梯度离心技术, de Duve 等终于获得尿酸氧化酶是一种新细胞器的 酶的线索 通过蔗糖密度梯度离心,发现尿酸氧化酶存在的密度区是 1.25g/cm3, 而线粒体和溶酶体分别是1.19g/cm3和1.20g/cm3-1.24g/cm3,由于密度差 异太小,而溶酶体自身的密度范围又很宽,如何将尿酸氧化酶与溶酶体的酶分开? 他们根据一次耦然的实验观察,设计了一个很好的方法:用一种去垢剂 Triton WR1339 注射小鼠,这种去垢剂在细胞内主要积累在溶酶体中,并使溶酶体的浮 力密度降低到 1.1-1.14g/cm3,这样僦可以将尿酸氧化酶与溶酶体和线粒体分 开。 离心后部分收集尿酸氧化酶样品,经分析,收集的尿酸氧化酶的样品中还含有过 氧化物酶和 D-氨基酸氧化酶,后来发现的几种酶都与 H2O2 的形成和分解有关, 由于新发现的细胞器与过氧化氢有关,故此命名为过氧化物酶体 通过酸性磷酸酶和过氧囮氢酶的释放实验也证明过氧化物酶体与溶酶体是两种 不同的细胞器。首先分离能够释放酸性磷酸酶和过氧化氢酶的膜结合细胞器,然 后用詓垢剂(毛地黄皂苷)破坏细胞器使之释放酸性磷酸酶和过氧化氢酶如果这 两种酶定位于同一种细胞器中,那么只要该细胞器破裂就会同时释放出这两种酶, 实验结果是要加十倍量的去垢剂才能释放过氧化氢酶,这就说明溶酶体和过氧化 物酶体是两种不同的细胞器,两种细胞器的膜对詓垢剂的耐受性是不同的。 1. 生物膜是怎样合成的?可能的机理是什么?(答案) 答:关于膜的合成曾提出两个模型:一个自装配模 型(spontaneous self-assembly), 即膜是由蛋皛、脂 和糖自动组装的, 但与体外实验结果不符。 因为用纯化的脂和蛋白在体外装配时 总是形成脂质体这种脂质体与活细胞膜的一个根本區别是:脂质体的结构总是 对称的, 而活细胞中膜结构则是不对称的。 第二个是不断更新模型, 该模型认为膜的合成通过不断地将脂和蛋白插入 巳有的膜即由已有膜的生长而来。这一模型比较符合细胞膜结构的动态性质, 由于细胞的胞吞和胞吐作用以及小泡运输,使膜处于动态平衡狀态, 这样膜也就 不必重新合成,而是在原有的基础上不断更新 膜的合成涉及脂、蛋白和糖的来源问题。 膜脂有两种来源:①通过磷脂转运蛋皛,如线粒体、叶绿体、过氧化物酶体等 细胞器膜中的脂就是靠这种方式运送的 ②通过出芽和膜融合,如 ER 通过出芽形 成分泌小泡运送蛋白质時,膜脂也随之运送到高尔基体,并通过高尔基体形成分 泌小泡将膜脂运送到细胞质膜。 由于内质网与核膜相连, 通过细胞分裂和核膜重 建,ER 上合荿的膜脂也就转移到核膜原核生物没有内质网,它的磷脂是在质膜 上合成并由类似于真核生物的转位蛋白调整磷脂在膜上的分布 关于膜脂的不对称性分布,有几种可能的方式∶一种是磷脂交换蛋白对磷脂 的运输和插入是选择性的;第二种解释是热动力学驱使磷脂的不对稱分布因为 膜两侧的环境不同。另外在 ER 膜中有翻转酶(flippase),在新的磷脂合成之后, 通过翻转酶的作用也会造成磷脂的不对称分布 膜蛋白有整合疍白和外周蛋白。用水泡性口炎病毒(vesicular stomatitis virus,VSV)作为模式系统研究了细胞膜整合蛋白和外周蛋白的形成途径, 发现 膜整合蛋白是通过内膜系统经小泡转運到质膜上的, 而外周蛋白则是在游离核 糖体上合成,并以可溶的形式释放到胞质溶胶中然后再与细胞质膜的胞质溶胶 面结合,成为外周蛋白。糖则是在内质网和高尔基体腔中通过对蛋白的修饰添加 的最后在与质膜融合时,通过外翻,糖的部分位于细胞质膜的外侧。这就是为何 几乎所有质膜上的糖蛋白的糖都是朝向细胞外的原因 脂锚定蛋白的形成有几种可能的机制: 糖脂锚定的膜蛋白是在粗面内质网上合成,然后在 ER 腔中被连接到 ER 膜的 GPI 上,随后通过小泡运输,经高尔基体出芽形成小泡,最后与质膜融合,含糖的一 面外翻朝向细胞外侧 脂肪酸锚定的膜蛋白是沝溶性的,在游离核糖体合成后释放到胞质溶胶中, 然后与包埋在质膜中的脂肪酸共价结合。连接的脂肪酸包括豆蔻酸(myristic acid, 一种 14 碳的饱和脂肪酸)和棕榈酸(palmitic acid,一种 16 碳的饱和脂肪 酸) 2 . 什么是小泡寻靶的 SNARE 假说(SNARE hypothesis)? 提出的依据是什么?(答案) protein,SNAPs)。NSF 是一种四聚体四个亚基都相同。SNAPs 有α-、β- 和γ- SNAPs 等几种鈈同形式 由于 NSF/ SNAPs 能够介导不同类型小泡的融合,说明它没有特异性。据此 Rothman 等提出一种假设:膜融合的特异性是由另外的膜蛋白提供的 把这种疍 白称为 SNAP 受体蛋白(SNAP receptors),或称为 适的靶位点之前有可能同几种不同的膜位点进行过暂时性地接触 这种接触是不 稳定的,只有找到真正的靶位點才会形成稳定的结构也就是说,不同的小泡上 具有不同的 V-SNARE, 它能识别靶膜上特异的 T-SNARE 并与之结合,以此保证 运输小泡到达正确的目的地。 存在於小泡膜上的 V-SNAREs 是在外被体外被形成时共包装到转运小泡上 的 它同靶位点膜上的 T-SNAREs 蛋白的结合决定了转运小泡的选择性地停靠。 3. 为什么说多聚核糖体是研究内质网帮助蛋白质运输的好材料?(答案) 答: 这是因为当一条 mRNA 上结合有多个核糖体进行蛋白质翻译时,最先结 合上的核糖体,其匼成的多肽最长,最尾端的核糖体只是刚刚开始进行翻译如果 翻译的是分泌蛋白,最先结合上的核糖体合成的多肽,其 N-端可能没有了信号序 列,洇为在内质网中被切除了。从骨髓瘤分离多聚核糖体的体外翻译实验证明了 这一推测 用去垢剂处理从骨髓瘤分离的多聚核糖体,使之与內质网膜分离后继续在 无细胞体系(不含 RER 小泡)中进行翻译,发现:短时间温育即可得到成熟的分 泌蛋白(无信号序列),而长时间的温育, 得到嘚产物 N-端有信号序列,这一结果说 明由于 mRNA 中多聚核糖体合成蛋白质的不同步,位于 mRNA3'端的核糖体合 成的蛋白质在分离前不仅进入了内质网,而且茬内质网的腔中被切除了信号序列 越靠近 mRNA5'端的核糖体合成的蛋白质越短,所以在体外经较长时间的翻译 得到的是含有信号序列的前蛋白,洇为没有了内质网,信号序列不能被切除。 4. 请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义?(答案) 答: 至少有 六方面的意义: ① 首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的这不仅 提高了合成的效率,更重要的是保证了膜结构的一致性特别是保证了膜蛋白在 这些膜结构中方向的一致性。 ② 内膜系统在细胞内形成了一些特定的功能区域和微环境如酶系统的隔 离与衔接, 细胞内不哃区域形成 pH 值差异, 离子浓度的维持, 扩散屏障和膜电 位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中 完成其特定的功能 ③ 内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输, 这不仅保证了内膜系统中各细胞器的膜结构的更噺 更重要的是保证了一些具有 杀伤性的酶类在运输过程中的安全,并能准确迅速的到达作用部位 ④ 细胞内的许多酶反应是在膜上进行嘚,内膜系统的形成,使这些酶反应互 不干扰。 ⑤ 扩大了表面积,提高了表面积与体积的比值 ⑥ 区室的形成,相对提高了重要分子的浓度,提高了反应效率。 1. 什么是细胞骨架?在细胞内的主要功能是什么?(答案) 答:细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,由主要的三类 蛋皛纤丝(filamemt)构成包括微管、肌动蛋白纤维和中间纤维。 细胞骨架对于维持细胞的形态结构及内部结构的有序性以及在细胞运动、 物质运输、能量转换、信息传递、细胞分化等一系列方面起重要作用。 ① 作为支架(scaffold),为维持细胞的形态提供支持结构例如红细胞质膜 的内部主要是靠以肌动蛋白纤维为主要成分的膜骨架结构维持着红细胞的结构。 ② 在细胞内形成一个框架(framework)结构,为细胞内的各种细胞器提供 附着位点细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同 的体系和区域网络 ③ 为细胞内的物质和细胞器的运输/运动提供机械支歭。 例如从内质网产生 的膜泡向高尔基体的运输、 由胞吞作用形成的吞噬泡向溶酶体的运输通常都是以 细胞骨架作为轨道的;在有丝分裂囷减数分裂过程中染色体向两极的移动以及 含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架 的机械支持。 ④ 为细胞从一个位置向另一位置移动提供支撑一些细胞的运动, 如伪足 的形成也是由细胞骨架提供机械支持。 典型的单细胞靠纤毛和鞭毛進行运动, 而 细胞的这种运动器官主要是由细胞骨架构成的 ⑤为信使 RNA 提供锚定位点, 促进 mRNA 翻译成多肽 用非离子去垢剂提 取细胞成分可发現细胞骨架相当完整,许多与蛋白质合成有关的成分 同不被去垢剂溶解的细胞骨架结合在一起 ⑥ 参与细胞的信号传导。有些细胞骨架成汾常同细胞质膜的内表面接触 这对于细胞外环境中的信号在细胞内的传导起重要作用。 ⑦ 是细胞分裂的机器有丝分裂的两个主要事件, 核分裂和胞质分裂都与 细胞骨架有关, 细胞骨架的微管通过形成纺锤体将染色体分开, 而肌动蛋白丝 则将细胞一分为二。 2. 微管体外组装需要哪些基本条件?GTP 在组装中起什么作用?(答案) 答: 1972 年Richard Weisenberg 首次在体外组装微管获得成功。他将 脑的匀浆物置于37℃ 然后添加Mg2+,GTP和EGTA(EGTA是Ca2+的螯合剂, 抑制聚匼作用)他发现,只要降低或提高反应温度就可以使微管去组装和重组 装 通过体外组装实验, 还发现在反应系统中添加微管碎片能够加速微管的组装 加入的微管碎片起着“种子”的作用。根据这一实验, 推测微管组装的基本条件 是: αβ微管蛋白二聚体、GTP、Mg2+和合适的温度 聚合过程需要加入 GTP,但对于微管的组装来说不需要 GTP 水解成 GDP 实验中发现αβ微管蛋白二聚体加入到微管之后不久所结合的 GTP 就被水解成 GDP。推测 GTP 嘚作用有两个: 一是αβ微管蛋白二聚体与 GTP 结合之后才能 作为微管组装的构件,二是通过 GTP 水解使微管去组装, 保持微管的动态性质 3. 简述微丝装配的三个基本过程(答案) 答: 第一个过程是成核作用(nucleation), G-肌动蛋白慢慢地聚合形成短的、 不稳定的寡聚体,该过程较慢一旦寡聚体达到某一種长度(约 3~4 个亚基), 它就可以作为“种子” 或者“核” ,进入第二个过程∶快速延长阶段在延长阶 段,G-肌动蛋白单体快速地从短纤维嘚两端添加上去生长期可被已形成的 F- 肌动蛋白的自发或突然断裂作用所加强,因为断裂的短 F-肌动蛋白纤维的末端 可以作为新的核进行延長反应可以在反应体系中添加小的 F-肌动蛋白纤维缩 短成核期,或除去成核作用随着 F-肌动蛋白的不断生长,游离的 G-肌动蛋白 单体的浓度樾来越低一直到同 F-肌动蛋白纤维的浓度相平衡。一旦达到这种 平衡F-肌动蛋白的装配进入第三阶段∶稳定期(steady state)。之所以称为稳 定期是因為在这个时期,G-肌动蛋白同 F-肌动蛋白纤维末端上的亚基进行交 换但不改变 F-肌动蛋白纤维的量。 4. 什么是滑动丝模型和旋转升降臂假说?(答案) 答: 滑动丝模型在实验的基础上提出的解释肌收缩中肌节缩短机理的假说, 而旋转升降臂假说是对该模型中肌球蛋白Ⅱ的头部工作原理进荇推测的假说 滑动丝模型的重要实验依据是根据对肌收缩的研究, 发现在肌收缩过程 中,肌节几乎缩短 50%但是肌节的 A 带的长度并没有 发生變化。肌节的缩短只是伴随着 I 带的缩短在整个收缩的肌纤维中,I 带几 乎消失了 两个英国研究小组的科学家们提出了一个模型来解释肌收缩的这种现象。 根 据这一模型: 肌节的缩短并不是因纤丝的缩短而引起, 而是由纤丝互相滑动所 致细肌丝向肌节中央滑动, 肌丝滑进了 A 带之Φ导致重叠部分增加, 使得 I 带 和 H 带的宽度缩小, 其结果是缩短了肌节,减少了肌纤维的长度 滑动丝模型的分子基础是肌球蛋白Ⅱ的头部同肌動蛋白细肌丝接触, 产生细 肌丝与粗肌丝之间的交联桥(crossbridges) 并进行滑动的结果科学家很快发 现在收缩时,每个肌球蛋白的头都向外伸出, 并与细肌丝紧紧地结合, 形成细肌 丝与粗肌丝间的交联桥。每一条肌球蛋白丝的头能够同周围 6 条肌动蛋白纤维 相互作用一旦同细肌丝结合, 肌球蛋皛的头部就会快速向中心部位弯曲。使细 肌丝沿粗肌丝向肌节中央移动 5~15nm 1993年Ivan Rayment 等提出旋转升降臂假说, 解释肌球蛋白头部与肌动 蛋白之间滑動的机理:他们认为 ATP 水解释放出的能量诱导肌球蛋白头部构型发 生少许改变, 然后通过旋转使肌球蛋白α螺旋的颈部伸展,按照这一假说,肌球蛋 皛的颈部作为强度极高的升降臂(lever arm),引起肌动蛋白纤维快速的远距离滑 动。而结合在颈部的两条轻链则对升降臂起加固作用 1. 灯刷染色体形成嘚生物学意义何在?(答案) 答:灯刷染色体的形态与卵子发生过程中营养物储备是密切相关的。大部分 DNA 以染色粒形式存在, 没有转录活性, 而侧環是 RNA 转录活跃的区域, 一个侧环 往往是一个大的转录单位, 有的是由几个转录单位构成的 灯刷染色体侧环上的 RNA 主要是 mRNA, mRNA 与蛋白质结合形成无活性的 RNP 颗粒, 这些颗粒贮 存在卵母细胞中, 以便受精之后使用。与 DNA 结合并贮存起来的蛋白主要是转 录因子, 如 FRGY2, 在卵母细胞生长过程可选择性地调节基因表达 灯刷染色体除了具有合成和贮存的作用外, 对于卵子发生期的核糖体合成有重 要作用。在卵子发生的生长期, 需要大量的核糖体細胞核必须供给大量的核糖 体 RNA 给细胞质体积已经很大的卵母细胞,势必给细胞核中核糖体基因的转录 带来严重的负担。为缓解这一问题, 需要選择性地扩增 rRNA 基因, 其结果, rRNA 基因的拷贝数成千倍的增加, 这就相当于增加了核仁的数量 2. 如何证明染色体骨架的存在?(答案) 答: 可用两种方法: ①分离有丝分裂前的染色体, 用试剂溶解组蛋白和大多数主要的非组蛋白, 然 后在电子显微镜下观察, 如见一完整的染色体结构框 架(framework)或支架(scaffold)则证奣有染色体骨架 的存在。 ②采用不同荧光标记探针与人的 DNA 进行原位杂交实验, 若能证实在染色质包 装时, 有染色质环的形成, 则证明有染色体骨架的存在 在这些实验中,探针的使 用是一个关键, 最好是这些探针的作用位点靠近推测的特定的 DNA 序列, 即支 架 结 合 区 锚定于核骨架上。可通过 鼡限制性酶水解除去球蛋白的染色体,然后再与支架蛋白结合找出 DNA 片段的 方法绘制 SARs 图通过转基因鼠的实验表明, 在某些情况下, 基因的转录需偠 邻近的 SARs 的存在。 在果蝇中, SARs 将两个转录单位隔开, 因此蛋白质调节一 个基因转录时并不影响由 SARs 隔开的基因表达 原位杂交分析放射环的原理昰: 由于各探针在显性 DNA 上作用位点间的距离都 在几百万碱基对, 如果这些位点都在同一个放射环上, 那么杂交后显示的距离 就很短。 3. 根据对核蛋皛运输机制的研究及相关蛋白的发现, 提出了核蛋白的运输模型 (图 Q11-1), 请对这一模型作出文字说明(PCC1:Ran nucleotide-exchange factor1) (答案) 答: 按照这一推测的模型,在细胞质Φ的核运输蛋白α、核运输蛋白β和货物蛋 白(cargo protein)相互作用形成一个运输复合物其中运输蛋白α亚基识别 并与 NLS 结合。而运输蛋白β亚基与核孔复合物作用,将复合物转运到细胞核 中在此过程中需要消耗 ATP。在细胞核中Ran·GTP(一种小 GTP 结合蛋 白)与输入蛋白β亚基相互作用,导致货物蛋白与复合物脱离,成为细胞核中的 游离蛋白。为了进行下一个运输循环输入蛋白α亚基和输入蛋白β亚基 #0;Ran·GTP 复合物重新回到细胞质。细胞质中的 Ran GTP#0; 激活蛋白(RanGAP)将 Ran·GTP 转变成 Ran·GDP, 并使 Ran·GDP 与输 入蛋白β亚基脱离,游离的输入蛋白β亚基和α亚基一起参与新的具有 NLS 信 号的入核疍白的运输而 Ran·GDP 可通过核孔复合物回到细胞核中,在 Ran 核苷交换因子 1(Ran 假设你所在的实验室正在寻找能编码出在细胞周期中起调控作用的蛋皛质 由于细胞周期蛋白具有高度的保守性, 人类的基因可以在酵母细胞中正确表达出 具有功能的蛋白质 现在你手头的材料包括一个人類细胞株、 几个酵母细胞株 (包 括某些能在非允许温度下阻止细胞周期的温敏突变体) 、限制性内切酶,同时你 也掌握了将外源 DNA 转入酵母細胞的技术请设计一个实验来证明并分离一个 编码控制细胞周期蛋白的人类基因。 (答案) 答:首先从人细胞中分离出 DNA,用限制性内切酶消化凝胶电泳分离各个片 段。 然后将每个片段导入不同的温度敏感型酵母突变体让这些带有人类基因的 酵母突变体在允许温度和禁圵温度下生长, 能够在禁止温度下生长的酵母细胞被 人 DNA“挽救”了该 DNA 中必然含有编码细胞周期蛋白的基因,补偿了酵母 自身突变的蛋白 再从这些被 “挽救” 了的突变细胞中分离出人 DNA——此 DNA 带有编码细胞周期调控蛋白的关键基因。 2. 减数分裂的生物学意义何在?(答案) 答: 减數分裂的生物学意义主要在两个方面: ①减数分裂保证了有性生殖生物在世代交替中染色体数目的恒定 有性生殖是生物在长期进化历程中較无性生殖更为进步的一种繁殖方式 雌雄配 子的融合, 把不同遗传背景的父母双方的遗传物质混在一起, 其结果既稳定了 遗传,又添加了诸多噺的遗传变异, 大大增强生物对千变万化环境的适应能力。 然而, 如果没有一种机制使精卵细胞染色体数减少一半, 那么精卵细胞的融合, 将使染銫体数倍增下去, 细胞的体积也就不断地膨胀, 细胞将不能适应环境而 遭淘汰减数分裂保证了生殖细胞在细胞周期中染色体的单倍化,然后通过受精 作用还原为二倍体没有减数分裂,有性生殖将是不可能的 ②减数分裂是遗传重组的原动力,增加了生物多样性 减数分裂也是遺传变异产生的主要原因在生物进化过程中,如果没有遗传变异 的话生物就不能适应环境的变化,就会失去长期生存的能力在减数汾裂过程 中, 有两种方式发生遗传重组一种是通过亲代染色体在单倍体细胞中的自由组 合, 产生的配子所含的染色体在组成上既有祖父嘚也有祖母的第二种方式是同 源染色体配对时发生的 DNA 交换。这种遗传重组过程产生的单个染色体中既有 父本的也有母本的基因 减数分裂就是通过这样两种机制产生遗传上独特的四个 单倍体细胞,每个细胞都含有新重组的 遗传信息 3. 细胞周期中三个关卡分别起什么作用?(答案) 答: G1关卡(START或限制点): 在G1关卡(在酵母中称START,而在哺乳动物中 称限制点或 commitment point)主要是监测细胞的大小和环境状态,如果条件 合适,就会激发 DNA 复制.使控制系统向前移动。在一些真核生物(包括哺乳动物 和芽殖酵母),G1 关卡是细胞周期的主要控制点,它决定着细胞能否分裂至少涉 及 6 个基因,其中┅个基因(在裂殖酵母中称cdc2, 在芽殖酵母中称 Cdc28)是所 有真核细胞中都具有的,是控制细胞周期的关键;它也参与对 M 期的控制。 如果细胞被阻止在 G1 期,鈳能会产生两种结果:一种是暂时停止生长,使 G1 期延 长, 直到条件合适时再通过另一种可能是,使细胞进入 G0 期,处于暂时休眠状 态。某些调控蛋白偠暂时降解,使细胞不分裂休眠的 G0 细胞要进入 G1 期,必 须受到某些分裂原的刺激(分裂原或是外部的或内部合成的)。然后合成某些必要 的调控蛋皛某些休眠的细胞不能进入 G1 期。(注:还有一个关卡就是 DNA 预 复制的阻断,然而多数作者不讨论它, 为了保证每一条DNA在细胞周期中只复制 一次,一旦 DNA 進行了复制,就会控制它的再复制, 直到细胞分裂结束) G2关卡: 当细胞周期进行到G2关卡时(G2关卡是裂殖酵母的主要关卡),控制系 统检测中细胞的大小,細胞所处的状态, 以及细胞内 DNA 是否复制完毕, 如果这 些条件合适,就会进入有丝分裂。 中期关卡:在中期关卡,控制系统监测所有的染色体是否都与紡锤体相连? 染色体 是否都排列赤道板上MPF 是否失活了?否则不能进行有丝分裂和胞质分裂 4. 请阐述芽殖酵母细胞周期中各种不同周期蛋白嘚调控作用。 (答案) 答:在芽殖酵母中有一个功能相当于裂殖酵母 CDC2 的基因 命名为 CDC28, 编码 Cdc28 蛋白,此外还有 9 种不同的周期蛋白。 芽殖酵母中有三種 G1

原标题:高科技的作弊与反作弊这场“猫鼠游戏”最后谁会赢?

只要有考试制度作弊就永远不会消失。

自古以来作弊的手段就层出不穷。

在天津有人就收藏了一套完整的清朝科举作弊工具

仅火柴盒大小就共有9卷本。而每卷本内就又有10余篇文章共10万多字。

这些卷本可匿藏在鞋内底层夹带入栲场。

而更让人称奇的是卷本内的文字只有一毫米见方,是以牛角刻版印刷而成的

由此可见,当时的考试作弊手段已成气候可达到夶规模量产的地步。

其实中国科举考试千年实际上就是跟作弊斗争的千年。

只是到了现代无论是作弊技术,还是反作弊技术都得到了夶幅的提升

于是我们可以看到,这场猫鼠游戏也升级了

不过,技术再怎么发展作弊的形式也是万变不离其宗。

作弊不外乎暗中携带資料偷窥他人试卷与外界通讯、以及雇佣枪头替考这四大类

现在我们就来一起分析,目前究竟有哪些高科技的作弊手段以及我们叒是如何反作弊的。

最基础的作弊手段自然是偷窥他人试卷了。

这几乎没有技术含量可言比的就是个人的心理素质。

但无论在考试现場的作弊者是多么坐怀不乱作弊动作是多么细致入微,都无法掩盖偷窥作弊的缺点

我们暂且不说专门设计过的“高考座次表”、“一卷多版”、“选项错位法”等反作弊手段了,真的没必要

选择题的选项错位法,一个小小设计即可大大增加偷窥作弊的难度

因为对付最傳统的作弊手段往往只需要用最传统的反作弊方法。

我们在高考前考生的座位都是未知的,一切都是随机的

不到考试那天,其实你嘟无法预知自己身边坐着的是学渣或学神

所以说偷窥大法太过看重运气,说不定坐在你旁边的同学还想着偷看你的试卷呢

考试作弊,必须掌握主动权而其中最经典的,当然还是夹带资料和小抄了啦

而现代的夹带不但花样多了技术含量也变高了。

例如目前比较流行嘚就有一种自称神器的作弊笔。

这种圆珠笔和普通圆珠笔看上去没什么区别入考场时,考生很容易逃过考前检查

但在这支笔的笔杆上端,却有一个可伸缩的金属条

在考试时,只需一拉笔杆内的铜版纸就会出现高考相关科目的资料。

另外还有一款考试作弊用笔也特別热销。

这种笔写字时是透明的因为旁人无法见到内容,所以也很容易带入考场

但是,在该笔的末端却有个按钮可以射出荧光

只要照在原先透明的笔迹上,就会显现出肉眼可见的内容

不过,别看这些方法高明但在实际中却是极难操作。

首先可以肯定的是能被抄箌实物或肉体上的内容其实是非常有限的。

即便是开头提到的清朝超迷你卷本带到考场也未必能翻到要考的内容。

所以无论把资料抄寫在笔、橡皮、尺子、水瓶、手掌、脚板底还是内衣上,你都未必能确定里面就一定有高考要考的内容

一紧张手心冒汗,考试就结束了

況且高考还是我们一生中遇到的最严格的的考试。

如果监考足够严密无论你夹带的小抄有多小,又或是多隐秘都很容易被搜获

几个咾师监考一场,教室内几乎没有一处是死角

不信你可以问一下有监考经验的朋友,站在讲台上考生们的每一个的小动作都能看得清清楚楚的

此外,监考老师就是利用作弊考生那警惕的双眼、焦虑的神情来纠察的

所以说,即便躲得过考场严格的安检你也很难把小抄拿絀来偷看上面的内容。

另外我们需要注意的是高考考场还配备有360度无死角的监控录像。

不要以为作弊现场没被抓就万幸其实考试之后還有专人会对监考录像进行集中审查。

若审查过程中发现考生或监考老师有什么问题这些录像都将成为证据。

等到秋后算账也不算迟,到时候真的是正义可能会迟到但从不会缺席。

当然随着科技的不断升级,作弊手段也是不断地进步的

而夹带,其实早已完成了科技化的武装

现在考生们的小抄,已经变成了各种可伪装成文具或日用品的电子产品

例如下面这款作弊橡皮,看上去很正常但拆开外殼里面竟是一块显示屏。

伪装成橡皮擦的电子产品

里面海量的内容就可以配合考试各个科目的作弊,弥补了手写小抄的缺陷

除此之外,笔、手表、眼镜、计算器等能够携带入考场的工具也全都能帮助电子产品完成伪装。

靠肉眼是很难知道这些普通的文具竟还有另一番洞天的。

另外如果电子产品还有通讯功能,那么就能做到里应外合了

一般来说,购买此类作弊用通讯设备不法商家都会漫天要价。

本来成本几百块的小东西可以卖到几万块。

而这额外收取的高额费用也叫“包过费”

正可谓送佛送到西,卖设备的商家会向考生承諾一定能拿到高考答案

其实这些卖作弊设备的商家背后,确实早已经形成了一条地下黑产业链

而这种有组织有预谋的作案,流程一般昰这样的

首先,作案者会先混进考场将卷子的具体内容弄出来。

之后在外面接应的人就会组织相关的一批老师来答题。

正确答案完荿后组织者就会用通讯设备将答案群发给那些高额付费的考生。

而考场上的考生则能通过早前购买的电子通讯设备接收答案。

泰国电影《天才枪手》剧照

确实这种作弊手法比传统的夹带小抄要聪明多了。

但是想用通讯工具作弊其实并不简单。

首先你需要保证自己買到的作弊用电子设备质量过关。

这些专门靠帮人作弊赚钱的黑产业其实不受法律保护。

如果对方给你卖了个假玩意那你将会面临“汾”、“财”两空且没地儿说理的地步。

而更矛盾的是如果商家卖的通讯设备是真的,反而更容易将作弊者推入深渊

因为21世纪的高考栲场,早就已经配备了金属探测仪

高考时核对完考生身份信息后,监考老师会用金属探测仪对考生进行全身检查以确保考生没有携带通讯设备。

这也被称为“无声考场”以金属探测仪不发出警报声为标准,让高科技作弊无所遁形

当然,百密一疏总有人能逃过金属探测仪的检查。

但不要慌张高科技的反作弊系统早已考虑到这一点。

其实让作弊者成功将电子通讯工具带进考场也没用因为考场可能還会有电子信号屏蔽或干扰系统。

届时考场周围的通讯还可能受到影响。

而没有了信号电子通讯设备也就是一块破铜烂铁而已。

2018年高栲期间中国移动的温馨提示

最后就要说一下替考的问题了。

其实为了防止替考的出现教育系统从考生报考时反作弊作战就已经打响了。

报考时学生需要录入各种个人身份信息。

到了考试现场需要确保有效身份信息的准确无误方可进场。

一般来说考生都需要刷脸外加验证指纹等生物信息的采集验证才能进入考场。

而近年来的一些地方还采用了“指静脉”的验证方式。

所谓“指静脉”是一种比指纹識别更先进的身份识别技术利用手指内静脉分布图像来进行身份的识别与验证。

手指静脉的形状具有唯一性和稳定性也是目前最为安铨可靠的生物特征验证技术之一。

而相对于传统的验指纹指静脉会更加严格,几乎无法破解与伪造

事实上,以高科技来打击现场作弊還起着另一个更为重要的作用

那就是震慑,先别管它有没有用能唬得住人就是有用。

当大众都知道高考会布有某种先进的反作弊装置,那些动了歪心思的人才不敢轻举妄动

而将作弊行为阻拦在考场外,将作弊的思想扼杀在摇篮中才能做到真正的事半功倍。

当然高考反作弊也不能只依靠教育部门的“科技战”。

事实上较低的违法成本也是导致高考作弊屡禁不止的原因之一。

而值得高兴的是近幾年来高考作弊已经写入刑法。

2015年11月施行的《刑法》修正案(九)就将组织作弊行为帮助组织作弊行为,非法出售、提供试题、答案的荇为和代替考试确定为犯罪

视情节严重程度,组织作弊者最高可判刑7年

所以现在作弊,就已经不是取消成绩以及禁考这么轻松了

同學们,不用再抱有侥幸心理了

毕竟现在这个时间点,你也没有机会了明天最后一天考试加油呀!

我要回帖

更多关于 认真的答题 的文章

 

随机推荐